Skip to main content

Advertisement

Log in

Vesicular mesoporous copper oxide as anode for high lithium storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous materials are desirable effective anodes for lithium storage with excellent high-rate performance. Such hierarchical nanoporous structure exhibits high specific surface area, moderate pore size distribution, and labyrinth-like channels between nanoparticles, which improve wettability with electrolyte, provide more active sites for Li+ storage, and enhance structure stability during cycling. Herein, we prepared a series of vesicular porous copper oxides from precursor by powder sintering at different thermal-decomposition temperatures. The product at 500 °C showed high BET with 102.1 m2/g, and delivered excellent electrochemical performance in lithium-ion batteries. The reversible capacity of CuO-500 retained 800 mA h g−1 at 100 mA g−1 after 60 recycles, and 400 mA h g−1 at 1000 mA g−1 after 300 recycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. N.G. Sahoo et al., Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012)

    Article  CAS  Google Scholar 

  2. N. Kittner et al., Energy storage deployment and innovation for the clean energy transition. Nat. Energy. 2, 17125 (2017)

    Article  Google Scholar 

  3. M. Armand et al., Lithium-ion batteries – current state of the art and anticipated developments. J. Power Sources. 479, 228708 (2020)

    Article  CAS  Google Scholar 

  4. P.G. Bruce et al., Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  5. M.R. Palacin et al., Recent advances in rechargeable battery materials: a chemist’s sperspective. Chem. Soc. Rev. 38, 2565–2575 (2009)

    Article  CAS  Google Scholar 

  6. T.T. Wei et al., Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–441 (2022)

    Article  CAS  Google Scholar 

  7. Y. Yu et al., Core-shell MgFe2O4@C nano-composites derived via thermal decomposition-reduction dual strategy for superior lithium storage. J. Alloy. Compd. 834, 155207 (2020)

    Article  CAS  Google Scholar 

  8. M.T. Li et al., POM-based metal organic frameworks with a woven fabric structure for lithium storage. CrystEngComm 24, 1279–1284 (2022)

    Article  CAS  Google Scholar 

  9. F. Janene et al., Hydrothermal synthesis, characterization, electrochemical, and optical properties of 2D sheet-like CuO nanostructures. J. Mater. Sci. Mater. Electron. 34, 69 (2023)

    Article  CAS  Google Scholar 

  10. G. Huang et al., Poly tannic acid carbon rods as anode materials for high performance lithium and sodium ion batteries. J. Colloid. Interf. Sci. 629, 832–845 (2023)

    Article  CAS  Google Scholar 

  11. T.F. Yi et al., Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 4, 586–595 (2021)

    Article  CAS  Google Scholar 

  12. L. Gao et al., Lithiophilic Zn-doped CuO/ZnO nanoarrays modified 3D scaffold inducing lithium lateral plating achieving highly stable lithium metal anode. Chem. Eng. J. 451, 138410 (2023)

    Article  CAS  Google Scholar 

  13. X.Z. Li et al., Interconnected Bi5Nb3O15@CNTs network as high-performance anode materials of Li-ion battery. Rare Met. 41, 3401–3411 (2022)

    Article  CAS  Google Scholar 

  14. J. Ahn et al., Magnesiothermic reduction-enabled synthesis of Si-Ge alloy nanoparticles with a canyon-like surface structure for Li-Ion battery. ChemElectroChem 5, 2729–2733 (2018)

    Article  CAS  Google Scholar 

  15. T.F. Yi et al., Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos. Part B-Eng. 167, 566–572 (2019)

    Article  CAS  Google Scholar 

  16. P.P. Peng et al., Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare Met. 40, 3049–3075 (2021)

    Article  CAS  Google Scholar 

  17. P.N. Nirmalraj et al., Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 11, 16–22 (2011)

    Article  CAS  Google Scholar 

  18. T. Dippong et al., Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials 11, 1560 (2021)

    Article  CAS  Google Scholar 

  19. Y. Shi et al., Recent development of membrane for vanadium redox flow battery applications: a review. Appl. Energ. 238, 202–224 (2019)

    Article  CAS  Google Scholar 

  20. M.A. Dar et al., Effect of d-block element Co2+ substitution on structural, Mössbauer and Dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)

    Article  CAS  Google Scholar 

  21. D. He et al., Novel Na2TiSiO5 anode material for lithium ion batteries. Chem. Commun. 55, 2234–2237 (2019)

    Article  CAS  Google Scholar 

  22. Q. Zhang et al., Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries. Energy Environ. Sci. 11, 669–681 (2018)

    Article  CAS  Google Scholar 

  23. J. Chen et al., Rapid construction of surface CuO-rich Co3O4/CuO composites as anodes for high-performance lithium-ion batteries. J. Solid State Chem. 318, 123787 (2023)

    Article  CAS  Google Scholar 

  24. L. Li et al., Facile fabrication and electrochemical performance of flower-like Fe3O4@C@layered double hydroxide (LDH) composite. J. Mater. Chem. A. 2, 8758–8765 (2014)

    Article  CAS  Google Scholar 

  25. L. Wang et al., Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016)

    Article  CAS  Google Scholar 

  26. X.F. Chen et al., Preparation of graphene supported porous Si@C ternary composites and their electrochemical performance as high capacity anode materials for Li-ion batteries. Ceram. Int. 41, 8533–8540 (2015)

    Article  CAS  Google Scholar 

  27. O. Rahaman et al., A first-principles study on the effect of oxygen content on the structural and electronic properties of silicon suboxide as anode material for lithium ion batteries. J. Power Sources. 307, 657–664 (2016)

    Article  CAS  Google Scholar 

  28. H. Xia et al., Nano flaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem. 20, 6896 (2010)

    Article  CAS  Google Scholar 

  29. L.J. Ma et al., Microporous binder for the silicon-based lithium-Ion battery anode with exceptional rate capability and improved cyclic performance. Langmuir 36, 2003–2011 (2020)

    Article  CAS  Google Scholar 

  30. M.H. Sun et al., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016)

    Article  CAS  Google Scholar 

  31. M.L. Ding et al., Porous materials for capture and catalytic conversion of CO2 at low concentration. Coord. Chem. Rev. 465, 214576 (2022)

    Article  CAS  Google Scholar 

  32. G.R. Cai et al., Metal−organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121, 12278–12326 (2021)

    Article  CAS  Google Scholar 

  33. A.G. Slater et al., Function-led design of new porous materials. Science 348, 6238 (2015)

    Article  Google Scholar 

  34. Q.L. Wei et al., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017)

    Article  Google Scholar 

  35. Y. Li et al., MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14, 1704435 (2018)

    Article  Google Scholar 

  36. Z.X. Li et al., Growth of flower-like MnO2 on porous ZIF-67 for achieving enhanced supercapacitive properties. Energ. Fuel. 36, 14490–14499 (2022)

    Article  CAS  Google Scholar 

  37. D. Acharya et al., Immoderate nanoarchitectures of bimetallic MOF derived Ni–Fe–O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon 201, 12–23 (2023)

    Article  CAS  Google Scholar 

  38. Y.W. Wang et al., Hierarchical porous carbons as sulfur host to restrain polysulfde migration for high-electrochemical performance Li–S batteries. Ionics 28, 2799–2803 (2022)

    Article  CAS  Google Scholar 

  39. Y.X. Li et al., Integration strategy for facile fabrication of porous carbon coated Fe3O4 nano spindles with enhanced lithium storage. J. Alloy. Compd. 935, 168105 (2023)

    Article  CAS  Google Scholar 

  40. H. Hu et al., Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries. Chem. Eng. J. 453, 139516 (2023)

    Article  CAS  Google Scholar 

  41. S. Cai et al., Artificial porous heterogeneous interface for all-solid-state sodium ion battery. J. Colloid. Interf. Sci. 632, 179–185 (2023)

    Article  CAS  Google Scholar 

  42. H. Gao et al., Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries. J. Energy Chem. 75, 154–163 (2022)

    Article  CAS  Google Scholar 

  43. M. Sevilla et al., Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)

    Article  CAS  Google Scholar 

  44. J. Liu et al., A novel and simple strategy for the direct synthesis bimetallic mesoporous materials Zr–La-SBA-15. Mater. Lett. 128, 15–18 (2014)

    Article  CAS  Google Scholar 

  45. X.F. Tang et al., Porous silicon particles embedded in N-doped graphene and carbon nanotube framework for high-performance lithium-ion batteries. J. Alloy. Compd. 927, 167055 (2022)

    Article  CAS  Google Scholar 

  46. F.Y. Qi et al., MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries. Appl. Surf. Sci. 605, 154653 (2022)

    Article  CAS  Google Scholar 

  47. R.Y. Dai et al., Temperature dependence of structure and ionic conductivity of LiTa2PO8 ceramics. Chem. Mater. 34, 10572–10583 (2022)

    Article  CAS  Google Scholar 

  48. J.B. Li et al., Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018)

    Article  CAS  Google Scholar 

  49. W.Q. Yao et al., Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329–341 (2019)

    Article  CAS  Google Scholar 

  50. F. Wang et al., Selective synthesis of CuO/C nanocomposites and porous CuO based on polyacrylic acid hydrogel system as high-performance anode for lithium-ion Batteries. Chem. Phys. 518, 1–7 (2019)

    Article  CAS  Google Scholar 

  51. X. Liu et al., Alkyldimethylbetaine-assisted development of hollow urchinlike CuO microspheres and application for high-performance battery anodes. ACS Omega 3, 13146–13153 (2018)

    Article  CAS  Google Scholar 

  52. S. Mirhashemihaghighi et al., Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes. Inorg. Chem. 51, 5554–5560 (2012)

    Article  CAS  Google Scholar 

  53. P.F. Hu et al., Supernano crystals boost the initial coulombic efficiency and capacity of copper benzene-1,3,5-tricarboxylate for Li-Ion batteries. Energy Fuels 37, 3134–3141 (2023)

    Article  CAS  Google Scholar 

  54. D. Bengono et al., Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Ionics 26, 1695–1701 (2020)

    Article  CAS  Google Scholar 

  55. C.L. Liang et al., Nitrogen-doped carbon-coated Fe3O4/rGO nanocomposite anode material for enhanced initial coulombic efficiency of lithium-ion batteries. Ionics 25, 1513–1521 (2019)

    Article  CAS  Google Scholar 

  56. Y. Yu et al., Design of micro-nanostructured Mn2O3@CNTs with long cycling for lithium-ion storage. J. Mater. Sci. Mater. Electron. 29, 4675–4682 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from Basic scientific research project of Heilongjiang Provincial department of education (No.2019-KYYWF-1398).

Author information

Authors and Affiliations

Authors

Contributions

HC participated in the conceptualization, methodology, investigation, formal analysis, and writing of the original draft. WW participated in the electrochemical experiments. JS participated in conceptualization, methodology, and reviewing & editing of the manuscript. SL participated in the characterization of materials. JZ participated in the electrochemical experiments. MH participated in conceptualization, methodology, and reviewing & editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingquan Sha.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Wang, W., Sha, J. et al. Vesicular mesoporous copper oxide as anode for high lithium storage. J Mater Sci: Mater Electron 34, 987 (2023). https://doi.org/10.1007/s10854-023-10356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10356-3

Navigation