Skip to main content
Log in

Production of hydrogen gas sensors based on sol–gel spin-coated Nb2O5 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, single-layer and multi-layer Nb2O5 thin films were obtained by using sol–gel spin-coating technique and applying annealing temperature. The formation of hydroxyl on the Nb2O5 surface was determined by the FTIR technique. It is seen the structure turns into pure Nb2O5 form above 350 °C. Thickness effects on the structural and morphological properties of the annealed films were investigated by SIMS, XRD, XPS and AFM measurements. The thicknesses of the 1, 2 and 3-layered films are 65, 108 and 178 nm, respectively, and Nb2O5 films have amorphous structures even at an annealing temperature of 350 °C. RMS surface roughness of the films increased with increasing the film thickness increasing the stacked layers, while the 2-layered film has the highest surface area. After the characterizations have been defined, Ag interdigital electrodes were fabricated on the developed films with the Aerosol Jet Printing technique to produce H2 gas sensors whose active material is single-layer and multi-layer Nb2O5 thin films. The sensing performances of the sensors were examined with respect to film thickness under H2 concentrations ranging from 90 to 1200 ppm at operating temperature of 25 °C. Based on the 2-layered film, the sensor shows better hydrogen sensitivity, which can be at least partially caused by the higher surface area of the films and also associate with thickness of 108 nm. In addition, all fabricated sensors have good selectivity to H2 gas compared to the other gases such as CO, O2 and C3H8, as well as long-term stability over 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  1. H. Sun, H. Lv, J. Alloy. Comp. 823: 153742(2020)

    Article  CAS  Google Scholar 

  2. N. Usha, R. Sivakumar, C. Sanjeeviraja, Y. Kuroki, J. Alloy Compd. 649, 112–121 (2015)

    Article  CAS  Google Scholar 

  3. S.S. More, P.A. Patil, K.D. Kadam, H.S. Patil, S.L. Patil, A.V. Pawar, T.D. Dongale, Results Phys. 12, 1946–1955 (2019)

    Article  Google Scholar 

  4. J.M.F. Lucas, S. Soreto Teixeira, S.R. Gavinho, P.R. Prezas, C.C. Silva, A.J.M. Sales, M.A. Valente, A.F. Almeida, F.N. Freire, C.C.M. Salgueiro, J.F. Nunes, M.P.F. Graça, J. Mater. Sci.: Mater. Electron. 30, 11346–11353 (2019)

    CAS  Google Scholar 

  5. N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, Q. Yang, J. Mater. Sci.: Mater. Electron. 30, 9822–9835 (2019)

    CAS  Google Scholar 

  6. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-Zadeh, J. Mater. Chem. A 2(38), 15683–15703 (2014)

    Article  CAS  Google Scholar 

  7. M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, F. Placido, Appl. Surf. Sci. 301, 63–69 (2014)

    Article  CAS  Google Scholar 

  8. S. Li, H. Shen, J. Chen, Y. Jiang, L. Sun, A. Raza, Y. Xu, J. Mater. Sci.: Mater. Electron. 30, 19871–19879 (2019)

    CAS  Google Scholar 

  9. Rps Patil, Ar. Patil, Sh. Mujavar, Sb. Sadale, J. Mater. Sci.: Mater. Electron. 16, 35–41 (2005)

    CAS  Google Scholar 

  10. S. Ouendi, C. Arico, F. Blanchard, J.L. Codron, X. Wallart, P.L. Taberna, P. Roussel, L. Clavier, P. Simon, C. Lethien, Energy Stor. Mater. 16, 581–588 (2019)

    Google Scholar 

  11. K.N. Chen, C.M. Hsu, J. Liu, Y.C. Liou, C.F. Yang, Micromachines 7(9), 151 (2016)

    Article  Google Scholar 

  12. M. Danish, A. Pandey, J. Mater. Sci.: Mater. Electron. 27, 6939–6946 (2016)

    CAS  Google Scholar 

  13. V. Khorramshahi, J. Kaamdel, R. Yousefi, J. Mater. Sci.: Mater. Electron. 29, 14679–14688 (2018)

    CAS  Google Scholar 

  14. M.I. Khan, K.A. Bhatti, R. Qindeel, H.S. Althobaiti, N. Alonizan, Results Phys. 7, 1437–1439 (2017)

    Article  Google Scholar 

  15. M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Results Phys. 7, 651–655 (2017)

    Article  Google Scholar 

  16. T. Hyodo, J. Ohoka, Y. Shimizu, M. Egashira, Sens. Actuators B Chem. 117(2), 359–366 (2006)

    Article  CAS  Google Scholar 

  17. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, K. Kalantar-zadeh, Sens. Actuators B Chem. 176, 149–156 (2013)

    Article  CAS  Google Scholar 

  18. D.C. Castro, R.P. Cavalcante, J. Jorge, M.A. Martines, L. Oliveira, G.A. Casagrande, Jr.A. Machulek, J. Braz Chem. Soc. 27, 303–313 (2016)

    CAS  Google Scholar 

  19. P. Griesmar, G. Papin, C. Sanchez, J. Livage, Chem. Mater. 3(2), 335–339 (1991)

    Article  CAS  Google Scholar 

  20. C.D. Gomez, J.E. Rodríguez-Paez, Process. Appl. Ceram. 12(3), 218–229 (2018)

    Article  CAS  Google Scholar 

  21. N.S. Rao, S. Dhamodaran, A.P. Pathak, P.K. Kulriya, Y.K. Mishra, F. Sing, D. Kabiraj, J.C. .Pivin, D.K. Avasthi, Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 264(2), 249–253 (2007)

    Google Scholar 

  22. B. Orel, M. Maček, J. Grdadolnik, A. Meden, J. Solid State Electrochem. 2(4), 221–236 (1998)

    Article  CAS  Google Scholar 

  23. V.S. Braga, F.D.C. Garcia, J.A. Dias, S.C. Dias, J. Therm. Anal. Calorim. 92(3), 851–855 (2008)

    Article  CAS  Google Scholar 

  24. P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, N. Rajendran, Surf. Coat. Technol. 244, 131–141 (2014)

    Article  CAS  Google Scholar 

  25. K.M. Eblagon, A. Malaika, K. Ptaszynska, M.F.R. Pereira, J.L. Figueiredo, Nanomaterials 10, 1685 (2020)

    Article  CAS  Google Scholar 

  26. Y.Q. Zhang, Z. Li, T. Ling, S.A. Kulinich, J. Mater. Chem. A 4(22), 8700–8706 (2016)

    Article  CAS  Google Scholar 

  27. X. Ma, Y. Chen, H. Li, X. Cui, Y. Lin, Mater. Res. Bull. 66, 51–58 (2015)

    Article  CAS  Google Scholar 

  28. J.M. Jehng, I.E. Wachs, Chem. Mater. 3(1), 100–107 (1991)

    Article  CAS  Google Scholar 

  29. F. Lenzmann, V. Shklover, K. Brooks, M. Grätzel, J. Sol–Gel Sci. Technol. 19(1), 175–180 (2000)

    Article  CAS  Google Scholar 

  30. B. Liu, H. Wang, Y. Chen, J. Wang, L. Peng, L. Li, J. Alloys Compd. 682, 584–589 (2016)

    Article  CAS  Google Scholar 

  31. K.W. Chen, L.S. Chen, C.M. Chen, J. Mater. Sci.: Mater. Electron. 30(16), 15105–15115 (2019)

    CAS  Google Scholar 

  32. G. Korotcenkov, B.K. Cho, Sens. Actuators B Chem. 142(1), 321–330 (2009)

    Article  CAS  Google Scholar 

  33. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, Sens. Actuators B Chem. 84, 258–264 (2002)

    Article  CAS  Google Scholar 

  34. R. Godbole, V.P. Godbole, P.S. Alegaonkar, S. Bhagwat, New. J. Chem. 41, 11807–11816 (2017)

    Article  CAS  Google Scholar 

  35. V.V. Ganbavle, S.V. Mohite, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Colloid Interface Sci. 451, 245–254 (2015)

    Article  CAS  Google Scholar 

  36. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, Thin Solid Films 460, 315–323 (2004)

    Article  CAS  Google Scholar 

  37. F. Xu, H.P. Ho, Micromachines 8(11), 333 (2017)

    Article  Google Scholar 

  38. W.Y. Chung, G. Sakai, K. Shimano, N. Miura, D.D. Lee, N. Yamazoe, Sens. Actuators B Chem. 46(2), 139–145 (1998)

    Article  CAS  Google Scholar 

  39. M.B. Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Procedia 44, 52–60 (2014)

    Article  Google Scholar 

  40. D. Pukazhselvan, N. Nasani, T. Yang, D. Ramasamy, A. Shaula, D.P. Fagg, Appl. Surf. Sci. 472, 99–104 (2019)

    Article  CAS  Google Scholar 

  41. A. Mirzaei, G.J. Sun, J.K. Lee, C. Lee, S. Choi, H.W. Kim, Ceram. Int. 43(6), 5247–5254 (2017)

    Article  CAS  Google Scholar 

  42. Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, H. Gu, Int. J. Hydrog. Energy 37(5), 4526–4532 (2012)

    Article  CAS  Google Scholar 

  43. S. Park, S. Park, S. Lee, H.W. Kim, C. Lee, Sens. Actuators B: Chem. 202, 840–845 (2014)

    Article  CAS  Google Scholar 

  44. Y. Zou, J. He, Y. Hu, R. Huang, Z. Wang, Q. Gu, RSC Adv. 8(30), 16897–16901 (2018)

    Article  CAS  Google Scholar 

  45. J. Yu, K.W. Cheung, W.H. Yan, D. Ho, IEEE Electron. Device Lett. 37(9), 1223–1226 (2016)

    Article  CAS  Google Scholar 

  46. S. Saukko, V. Lantto, Thin solid films 436(1), 137–140 (2003)

    Article  CAS  Google Scholar 

  47. G. Korotcenkov, Handbook of gas sensor materials (Springer, New York, 2013), pp.197–220

    Book  Google Scholar 

  48. T. Galonska, C. Senft, W. Widanarto, O. Senftleben, I. Eisele, H.P. Frerichs, Ch. Wilbertz, Sensors 1, 1036–1039 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Presidency of Strategy and Budget (Turkey) under Project number 2019K12-149045 and G.U. BAP under Project number of 70/2020-01.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HAK implemented the research scheme and wrote the manuscript. All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Akkaya Komurcu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komurcu, H.A., Ataser, T., Sonmez, N.A. et al. Production of hydrogen gas sensors based on sol–gel spin-coated Nb2O5 thin films. J Mater Sci: Mater Electron 34, 922 (2023). https://doi.org/10.1007/s10854-023-10339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10339-4

Navigation