Skip to main content

Advertisement

Log in

High electrochemical performance of Co3O4-PVDF-NMP-based supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The harvesting of renewable energy storage has prompted extensive study on the energy storage devices, chiefly batteries and supercapacitors. Electrodes made up of nano-architecture arrays are promising candidate to strengthen the electrochemical performance of the energy storage devices. In this work, nano-sized Co3O4 materials have been prepared by facile coprecipitate technique. The materials were characterized by XRD, FTIR, SEM, EDAX, HR-TEM and XPS. The TEM studies confirmed the existence of nano-rods of length ranges from 50 to 160 nm. The electrochemical studies were carried out using three-electrode system. The Co3O4 electrode material exhibited prominent specific capacitance of 373.84 F g−1 at the current density of 1.5 A g−1 with superior cyclic stability of 92% after 1000 cycles. The Co3O4 nanorods are attributed to high surface to volume ratio which results in more provisions for active sites and in turn enhance the redox reactions. Also the EIS studies reveal the diffusive charge transfer mechanism that enhances the accumulation of charges. The results imply that Co3O4 nanoparticles would be a promising material for electrodes in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Dr. R. Mariappan, upon reasonable request.

References

  1. D. Guo, X. Song, F. Li, L. Tan, H. Ma, L. Zhang, Y. Zhao, Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor. Colloids Surf., A 546, 1–8 (2018)

    Article  CAS  Google Scholar 

  2. X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41(23), 7909–7937 (2012)

    Article  CAS  Google Scholar 

  3. P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, Formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeoliticimidazolate frameworks for hybrid supercapacitors. AngewandteChemie 129(25), 7247–7251 (2017)

    Google Scholar 

  4. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    Article  CAS  Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  CAS  Google Scholar 

  6. W. Li, H. Lu, N. Zhang, M. Ma, Enhancing the properties of conductive polymer hydrogels by freeze–thaw cycles for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces 9(23), 20142–20149 (2017)

    Article  CAS  Google Scholar 

  7. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013)

    Article  CAS  Google Scholar 

  8. B. Wang, Y. Wang, J. Park, H. Ahn, G. Wang, In situ synthesis of Co3O4/graphenenanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J. Alloy. Compd. 509(29), 7778–7783 (2011)

    Article  CAS  Google Scholar 

  9. S. Gupta, S.B. Carrizosa, Graphene–inorganic hybrids with cobalt oxide polymorphs for electrochemical energy systems and electrocatalysis: Synthesis, processing and properties. J. Electron. Mater. 44(11), 4492–4509 (2015)

    Article  CAS  Google Scholar 

  10. X. Xie, W. Shen, Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale 1(1), 50–60 (2009)

    Article  CAS  Google Scholar 

  11. R. Al-Tuwirqi, A.A. Al-Ghamdi, N.A. Aal, A. Umar, W.E. Mahmoud, Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices Microstruct. 49(4), 416–421 (2011)

    Article  CAS  Google Scholar 

  12. J. Jiu, Y. Ge, X. Li, L. Nie, Preparation of Co3O4 nanoparticles by a polymer combustion route. Mater. Lett. 54(4), 260–263 (2002)

    Article  CAS  Google Scholar 

  13. A.B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K.V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int. J. Electrochem. Sci 14(4), 3535–3552 (2019)

    Article  CAS  Google Scholar 

  14. Z. Liu, C. Ma, Q. Cai, T. Hong, K. Guo, L. Yan, Promising cobalt oxide and cobalt oxide/silver photocathodes for photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 161, 46–51 (2017)

    Article  CAS  Google Scholar 

  15. A. El Bachiri, L. Soussi, O. Karzazi, A. Louardi, A. Rmili, H. Erguig, B. El Idrissi, Electrochromic and photoluminescence properties of cobalt oxide thin films prepared by spray pyrolysis. Spectrosc. Lett. 52(1), 66–73 (2019)

    Article  Google Scholar 

  16. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    Article  CAS  Google Scholar 

  17. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020)

    Article  CAS  Google Scholar 

  18. Y. Zhang, X. Xu, Machine learning properties of electrolyte additives: A focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2020)

    Article  Google Scholar 

  19. Y. Zhang, X. Xu, Predicting the superconducting transition temperature and relative resistance ratio in YBa2Cu3O7 films. Physica C 592, 1353998 (2022)

    Article  CAS  Google Scholar 

  20. E. Duraisamy, S. Archana, A. Prasath, P. Elumalai, High capacity and high stability lithium-ion battery using nanoSn/SnS-decorated carbon leaf anode and LiCoO2 cathode for consumer electronics. ElectrochimicaActa 338, 135863 (2020)

    Article  CAS  Google Scholar 

  21. D. Cao, J. Chao, L. Sun, G. Wang, Catalytic behavior of Co3O4 in electroreduction of H2O2. J. Power Sour. 179(1), 87–91 (2008)

    Article  CAS  Google Scholar 

  22. H.A. Alalwan, D.M. Cwiertny, V.H. Grassian, Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: A materials characterization approach to understanding oxygen carrier performance. Chem. Eng. J. 319, 279–287 (2017)

    Article  CAS  Google Scholar 

  23. R. Bhargava, S. Khan, N. Ahmad, M.M.N. Ansari, Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf. Proc. 1953, 030034 (2018)

    Article  Google Scholar 

  24. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115(31), 15646–15654 (2011)

    Article  CAS  Google Scholar 

  25. S. Zallouz, B. Rety, L. Vidal, J.M. Le Meins, C. Mate Gihimbeu, Co3O4 nanoparticles embedded in mesoporous carbon for supercapacitor applications. ACS Appl. Nano Mater. 4(5), 5022–5037 (2021)

    Article  CAS  Google Scholar 

  26. I. Rabani, J. Yoo, H.S. Kim, S. Hussain, K. Karuppasamy, Y.S. Seo, Highly dispersive Co 3 O 4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 13(1), 355–370 (2021)

    Article  CAS  Google Scholar 

  27. Y. Fan, H. Chen, Y. Li, D. Cui, Z. Fan, C. Xue, PANI- Co3O4 with excellent specific capacitance as an electrode for supercapacitors. Ceram. Int. 47(6), 8433–8440 (2021)

    Article  CAS  Google Scholar 

  28. G. Maheshwaran, G. Seethalakshmi, V.K. Devi, L.M. VenkataKrishna, M.R. Prabhu, M.K. Kumar, S. Sudhahar, Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications. Curr. Appl. Phys. 36, 63–70 (2022)

    Article  Google Scholar 

  29. C.V. Niveditha, R. Aswini, M.J. Fatima, R. Ramanarayan, N. Pullanjiyot, S. Swaminathan, Feather like highly active Co3O4 electrode for supercapacitor application: a potentiodynamic approach. Mater. Res. Express 5(6), 065501 (2018)

    Article  Google Scholar 

  30. H. Xu, L. Gao, Q. Zhang, J. Li, J. Diwu, X. Chou, C. Xue, Preparation method of Co3O4 nanoparticles using degreasing cotton and their electrochemical performances in supercapacitors. J. Nanomater. 2014, 1 (2014)

    Article  Google Scholar 

  31. R. Kumar, A. Soam, V. Sahajwalla, Carbon coated cobalt oxide (CC- Co3O4) as electrode material for supercapacitor applications. Materials Advances 2(9), 2918–2923 (2021)

    Article  CAS  Google Scholar 

  32. T. Geng, L. Zhang, H. Wang, K. Zhang, X. Zhou, Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 38, 1171–1175 (2015)

    Article  CAS  Google Scholar 

  33. X. Wang, J. Fu, Q. Wang, Z. Dong, X. Wang, A. Hu, S. Yang, Preparation and electrochemical properties of Co3O4 supercapacitor electrode materials. Curr. Comput.-Aided Drug Des. 10(9), 720 (2020)

    CAS  Google Scholar 

  34. S. Ramesh, K. Karuppasamy, H.S. Kim, J.H. Kim, Hierarchical Flowerlike 3D nanostructure of Co3O4@ MnO2/N-doped Graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8(1), 16543 (2018)

    Article  Google Scholar 

  35. M. Mirzaeian, N. Akhanova, M. Gabdullin, Z. Kalkozova, A. Tulegenova, S. Nurbolat, K. Abdullin, Improvement of the pseudocapacitive performance of cobalt oxide-based electrodes for electrochemical capacitors. Energies 13(19), 5228 (2020)

    Article  CAS  Google Scholar 

  36. S.M. Jogade, D.S. Sutrave, Electrochemical performance of Mn doped Co3O4 supercapacitor: effect of aqueous electrolytes. J. Mater. Sci. Eng. 6, 351 (2017)

    Google Scholar 

  37. C. Guo, M. Yin, C. Wu, J. Li, C. Sun, C. Jia, Y. Wei, Highly stable gully-network Co3O4 nanowire arrays as battery-type electrode for outstanding supercapacitor performance. Front. Chem. 6, 636 (2018)

    Article  CAS  Google Scholar 

  38. L. Tao, L. Shengjun, Z. Bowen, W. Bei, N. Dayong, C. Zeng, Z. Weifeng, Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance. Nanoscale Res. Lett. 10(1), 1–7 (2015)

    Article  Google Scholar 

  39. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/ Co3O4 composite for supercapacitor electrode. J. Power Sour. 226, 65–70 (2013)

    Article  CAS  Google Scholar 

  40. H. Liu, X. Gou, Y. Wang, X. Du, C. Quan, T. Qi, Cauliflower-like Co3O4/three-dimensional graphene composite for high performance supercapacitor applications. J. Nanomater. 2015, 11–11 (2015)

    Article  Google Scholar 

  41. M. Kalyani, R.N. Emerson, High-performance supercapacitor cobalt oxide thin films by the influence of copper substrate. Int. J. Pure Appl. Phys. 14, 115–124 (2018)

    Google Scholar 

  42. F. Zhang, L. Hao, L. Zhang, X. Zhang, Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int. J. Electrochem. Sci 6, 2943–2954 (2011)

    CAS  Google Scholar 

  43. Z. Yu, Z. Cheng, Z. Tai, X. Wang, C.M. Subramaniyam, C. Fang, S. Dou, Tuning the morphology of Co3O4 on Ni foam for supercapacitor application. RSC Adv. 6(51), 45783–45790 (2016)

    Article  CAS  Google Scholar 

  44. C. Guan, X. Qian, X. Wang, Y. Cao, Q. Zhang, A. Li, J. Wang, Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology 26(9), 094001 (2015)

    Article  CAS  Google Scholar 

  45. R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, H.N. Alshareef, Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6(6), 4196–4206 (2014)

    Article  CAS  Google Scholar 

  46. K. Chopngam, M. Luengchavanon, M. Khangkhamano, K. Chetpattananondh, W. Limbut, Coating activated carbon from coconut shells with Co3O4/CeO2 for high-performance supercapacitor applications: an experimental study. Bio Resources 16(4), 8022–8037 (2021)

    CAS  Google Scholar 

  47. Q. Hu, Z. Gu, X. Zheng, X. Zhang, Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem. Eng. J. 304, 223–231 (2016)

    Article  CAS  Google Scholar 

  48. M. Wang, J. Zhang, X. Yi, B. Liu, X. Zhao, X. Liu, High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel. Beilstein J. Nanotechnol. 11(1), 240–251 (2020)

    Article  Google Scholar 

  49. Z. Wang, S. Pan, B. Wang, J. Qi, L. Tang, L. Liu, Asymmetric supercapacitors based on Co3O4@ MnO2@ PPy porous pattern core-shell structure cathode materials. J. Electrochem. Sci. Technol. 12(3), 346–357 (2021)

    Article  CAS  Google Scholar 

  50. R. Miao, B. Tao, F. Miao, Y. Zang, C. Shi, L. Zhu, P.K. Chu, Co3O4 and Co (OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode. Ionics 25, 1783–1792 (2019)

    Article  CAS  Google Scholar 

  51. C.P. Lee, B.T. Murti, P.K. Yang, F. Rossi, C. Carraro, R. Maboudian, Cobalt oxide-decorated silicon carbide nano-tree array electrode for micro-supercapacitor application. Materials 14(16), 4514 (2021)

    Article  CAS  Google Scholar 

  52. M. Khalaj, A. Sedghi, H.N. Miankushki, S.Z. Golkhatmi, Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188, 116088 (2019)

    Article  CAS  Google Scholar 

  53. R. Pai, V. Kalra, High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. J. Mater. Res. 33(9), 1199–1210 (2018)

    Article  CAS  Google Scholar 

  54. N. Padmanathan, S. Selladurai, K.M. Razeeb, Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Adv. 5(17), 12700–12709 (2015)

    Article  CAS  Google Scholar 

  55. W. Jia, J. Li, Z. Lu, Y. Juan, Y. Jiang, Synthesis of Honeycomb-like Co3O4 Nanosheets with Excellent Supercapacitive Performance by morphological controlling derived from the alkaline source ratio. Materials 11(9), 1560 (2018)

    Article  Google Scholar 

  56. Z. Yin, K. Allado, A.T. Sheardy, Z. Ji, D. Arvapalli, M. Liu, J. Wei, Mingled MnO2 and Co3O4 Binary nanostructures on well-aligned electrospun carbon nanofibers for nonenzymatic glucose oxidation and sensing. Cryst. Growth Des. 21(3), 1527–1539 (2021)

    Article  CAS  Google Scholar 

  57. L. Xing, Y. Dong, F. Hu, X. Wu, A. Umar, Co3O4 nanowire@ NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 47(16), 5687–5694 (2018)

    Article  CAS  Google Scholar 

  58. N.O.M. Dewi, Y. Yulizar, D.O.B. Apriandanu, Green synthesis of Co3O4 nanoparticles using Euphorbia heterophylla L. leaves extract: characterization and photocatalytic activity. IOP Conf. Series: Mater. Sci. Eng. 509, 012105 (2019)

    Article  CAS  Google Scholar 

  59. S. Nallusamy, K. Sujatha, Experimental analysis of nanoparticles with cobalt oxide synthesized by coprecipitation method on electrochemical biosensor using FTIR and TEM. Mater. Today Proc. 37, 728–732 (2021)

    Article  CAS  Google Scholar 

  60. T.F. Yi, L.Y. Qiu, J. Mei, S.Y. Qi, P. Cui, S. Luo, Y.B. He, Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 65(7), 546–556 (2020)

    Article  CAS  Google Scholar 

  61. T.F. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. Xie, Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 4(4), 586–595 (2021)

    Article  CAS  Google Scholar 

  62. T.T. Wei, P. Peng, Y.R. Ji, Y.R. Zhu, T.F. Yi, Y. Xie, Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022)

    Article  CAS  Google Scholar 

  63. S.Y. Zhang, T.T. Li, H.L. Zhu, Y.Q. Zheng, Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium. J. Mater. Sci. 53(6), 4323–4333 (2018)

    Article  CAS  Google Scholar 

  64. X.M. Yue, Z.J. Liu, C.C. Xiao, M. Ye, Z.P. Ge, C. Peng, S.Q. Zhang, Synthesis of Co3O4/reduced graphene oxide by one step-hydrothermal and calcination method for high-performance supercapacitors. Ionics 27(1), 339–349 (2021)

    Article  CAS  Google Scholar 

  65. M. Cheng, S. Duan, H. Fan, X. Su, Y. Cui, R. Wang, Core@ shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 327, 100–108 (2017)

    Article  CAS  Google Scholar 

  66. P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3(26), 13874–13883 (2015)

    Article  CAS  Google Scholar 

  67. A. Hosseinian, A. Amjad, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Babazadeh, E. Vessally, Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28(23), 18040–18048 (2017)

    CAS  Google Scholar 

  68. E.U. Ikhuoria, S.O. Omorogbe, B.T. Sone, M. Maaza, Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci. Technol. Mater. 30(2), 92–98 (2018)

    Article  Google Scholar 

  69. J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, L. Mai, 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19, 222–233 (2016)

    Article  CAS  Google Scholar 

  70. R. Ahmed, G. Nabi, Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application. Journal of Energy Storage 33, 102115 (2021)

    Article  Google Scholar 

  71. D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh, N.K. Shrestha, S.H. Han, Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater. 171, 53–57 (2013)

    Article  CAS  Google Scholar 

  72. Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan, D. Xiao, Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl. Mater. Interfaces 6(9), 6739–6747 (2014)

    Article  CAS  Google Scholar 

  73. F.B. Ajdari, E. Kowsari, A. Ehsani, Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. J. Solid State Chem. 265, 155–166 (2018)

    Article  CAS  Google Scholar 

  74. T. Meng, P.P. Ma, J.L. Chang, Z.H. Wang, T.Z. Ren, The electrochemical capacitive behaviors of NiO nanoparticles. ElectrochimicaActa 125, 586–592 (2014)

    Article  CAS  Google Scholar 

  75. Y. Yin, Y. Xu, Y. Zhou, Y. Yan, K. Zhan, J. Yang, B. Zhao, Millimeter-long vertically aligned carbon-nanotube-supported Co3O4 composite electrode for high-performance asymmetric supercapacitor. ChemElectroChem 5(10), 1394–1400 (2018)

    Article  CAS  Google Scholar 

  76. E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@ carbon nanocomposite. New J. Chem 42(8), 6114–6124 (2018)

    Article  CAS  Google Scholar 

  77. T. Zhu, J.S. Chen, X.W. Lou, Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J. Mater. Chem. 20(33), 7015–7020 (2010)

    Article  CAS  Google Scholar 

  78. W. Deng, W. Lan, Y. Sun, Q. Su, E. Xie, Porous CoO nanostructures grown on three-dimension graphene foams for supercapacitors electrodes. Appl. Surf. Sci. 305, 433–438 (2014)

    Article  CAS  Google Scholar 

  79. Y.G. Zhu, Y. Wang, Y. Shi, J.I. Wong, H.Y. Yang, CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 3, 46–54 (2014)

    Article  CAS  Google Scholar 

  80. I.M. Babu, J.J. William, G. Muralidharan, Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl. Surf. Sci. 480, 371–383 (2019)

    Article  CAS  Google Scholar 

  81. Y. Liang, Y. Yang, Z. Hu, Y. Zhang, Z. Li, N. An, H. Wu, Three-dimensional cage-like Co3O4 structure constructed by nanowires for supercapacitor. Int. J. Electrochem. Sci 11, 4092–4109 (2016)

    Article  CAS  Google Scholar 

  82. R. Selvapriya, M. Alagar, High performance asymmetric supercapacitor based on spinel Co3O4 nanoparticles. Electrochim. Acta 180, 287–294 (2017)

    Google Scholar 

  83. H. Wang, J. Guo, C. Qing, D. Sun, B. Wang, Y. Tang, Novel topotactically transformed carbon–CoO–NiO–NiCo2O4 nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chem. Commun. 50(63), 8697–8700 (2014)

    Article  CAS  Google Scholar 

  84. W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys. 13(32), 14462–14465 (2011)

    Article  CAS  Google Scholar 

  85. M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J. Power Sour. 252, 98–106 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The author acknowledge the Directorate of Technical Education, Government of Tamilnadu and University Grants Commission, UGC—Q4SERO, Hyderabad (India), for financial support under the project (No. MRP-4892/14 (SERO/UGC)) and Adhiyamaan College of Engineering, Hosur, for providing the research facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

AK: contributed to methodology, formal analysis, resources, and funding acquisition. RM: contributed to conceptualization, methodology, investigation, data curation, and writing—review & editing. RB and EK contributed to conceptualization, methodology, writing—review & editing, supervision, validation, and project administration.

Corresponding author

Correspondence to R. Mariappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies involving animals, performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, A., Mariappan, R., Bakkiyaraj, R. et al. High electrochemical performance of Co3O4-PVDF-NMP-based supercapacitor electrode. J Mater Sci: Mater Electron 34, 728 (2023). https://doi.org/10.1007/s10854-023-10147-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10147-w

Navigation