Skip to main content
Log in

Microwave-assisted reduction of graphene oxide using Artemisia vulgaris extract for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work has reported a microwave-assisted green reduction approach for reducing graphene oxide (GO) to reduced graphene oxide (rGO) using Artemisia vulgaris plant leaf extract. GO has been synthesised following the modified Hummers method. The reduction of graphene oxide (GO) has been conducted in three sets resulting in six reduced graphene oxide (rGO) samples (R1–R6) with a maximum reduction time of 1 h. Three sets of parameters with changes in microwave input power, reduction reaction time and volume of plant extract have been investigated to acquire an optimised set of reduction conditions. The reported optimised set exhibited the highest specific capacitance (CS) value out of the parameters investigated. The study is based on the comparative analysis of structural, morphological, vibrational, optical, bonding and networks and electrochemical properties of GO and its reduced products (rGO) for supercapacitor application. The potential of this plant extract to reduce GO into rGO has been reported. Furthermore, it was discovered that only a particular volume of Artemisia vulgaris extract might be employed for effective reduction. The rGO samples have been studied for supercapacitor electrode application. Total charge resistance (RCT) analysis through electrochemical impedance spectroscopy (EIS) reveals the decrease in RCT value from 295.51 Ω for GO to as low as 42.09 Ω for R5. The CS of the synthesised GO and all rGO samples have been calculated using CD and CV plots. The highest value recorded for R5 was 111.62 Fg−1 at a scan rate of 0.005 Vs−1 and 94.80 Fg−1 at a current density of Ag−1. The cyclic stability after 5000 cycles at a current density of 3 Ag−1 was recorded as 74.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  2. U.A. Méndez-Romero, S.A. Pérez-García, X. Xu, E. Wang, L. Licea-Jiménez, Functionalized reduced graphene oxide with tunable band gap and good solubility in organic solvents. Carbon 146, 491 (2019)

    Article  Google Scholar 

  3. Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang, L. Wan, J. Li, L. Chen, X. Wang, S. Ding, D.W. Zhang, Evolution of the bandgap and optical properties of graphene oxide with controllable reduction level. Carbon 62, 157 (2013)

    Article  CAS  Google Scholar 

  4. R. Bhujel, S. Rai, U. Deka, B.P. Swain, Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. J. Alloys Compd. 792, 250 (2019)

    Article  CAS  Google Scholar 

  5. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078 (2013)

    Article  CAS  Google Scholar 

  6. K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149, A1058 (2002)

    Article  CAS  Google Scholar 

  7. Z. Gan, N. Song, H. Zhang, Z. Ma, Y. Wang, C. Chen, One-Step Electrofabrication of reduced graphene oxide/poly(n-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc. 167, 085501 (2020)

    Article  CAS  Google Scholar 

  8. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268 (2017)

    Article  CAS  Google Scholar 

  9. A.C. Dhanemozhi, V. Rajeswari, S. Sathyajothi, Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Mater. Today Proc. 4, 660 (2017)

    Article  Google Scholar 

  10. S. Maiti, A. Pramanik, S. Mahanty, Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal-organic framework. CrystEngComm 18, 450 (2016)

    Article  CAS  Google Scholar 

  11. S. Sardana, A. Gupta, A.S. Maan, S. Dahiya, K. Singh, A. Ohlan, Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode. Indian J. Phys. 96, 433 (2022)

    Article  CAS  Google Scholar 

  12. B. Sharma, S. Thakur, D. Trache, H.Y. Nezhad, V.K. Thakur, Microwave-assisted rapid synthesis of reduced graphene oxide-based gum tragacanth hydrogel nanocomposite for heavy metal ions adsorption. Nanomaterials 10, 1616 (2020)

    Article  CAS  Google Scholar 

  13. A. Moyseowicz, A. Śliwak, E. Miniach, G. Gryglewicz, Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors. Compos. B 109, 23 (2017)

    Article  CAS  Google Scholar 

  14. C.H. Kim, B.H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 274, 512 (2015)

    Article  CAS  Google Scholar 

  15. F. Liu, C. Wu, Y. Dong, C. Zhu, C. Chen, Poly (azure C)-coated CoFe Prussian blue analogue nanocubes for high-energy asymmetric supercapacitors. J. Colloid Interface Sci. 628, 682 (2022)

    Article  CAS  Google Scholar 

  16. C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014)

    Article  CAS  Google Scholar 

  17. R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263 (2008)

    Article  CAS  Google Scholar 

  18. W. Guoxiu, Y. Juan, P. Jinsoo, G. Xinglong, W. Bei, L. Hao, Y. Jane, Facile synthesis and characterisation of graphene nanosheets. J. Phys. Chem. C 112, 8192 (2008)

    Article  Google Scholar 

  19. D. Perumal, E.L. Albert, C.A.C. Abdullah, Green reduction of graphene oxide involving extracts CS of plants from different taxonomy groups. J. Compos. Sci. 6, 58 (2022)

    Article  CAS  Google Scholar 

  20. M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: a review. Mater. Res. Bull. 59, 323 (2014)

    Article  CAS  Google Scholar 

  21. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279 (2010)

    Article  CAS  Google Scholar 

  22. O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by Graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B 115, 6279 (2011)

    Article  CAS  Google Scholar 

  23. J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 22, 2213 (2010)

    Article  CAS  Google Scholar 

  24. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar, new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429 (2010)

    Article  CAS  Google Scholar 

  25. S. Rai, R. Bhujel, J. Biswas, B.P. Swain, Biocompatible synthesis of rGO from ginger extract as a green reducing agent and its supercapacitor application. Bull. Mater. Sci. 44, 40 (2021)

    Article  CAS  Google Scholar 

  26. Z. Lin, X. Weng, L. Ma, B. Sarkar, Z. Chen, Mechanistic insights into Pb (II) removal from aqueous solution by green reduced graphene oxide. J. Colloid Interface Sci. 550, 1 (2019)

    Article  CAS  Google Scholar 

  27. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331 (2012)

    Article  CAS  Google Scholar 

  28. B. Li, X. Jin, J. Lin, Z. Chen, Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. J. Clean. Prod. 189, 128 (2018)

    Article  CAS  Google Scholar 

  29. R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160, 355 (2015)

    Article  CAS  Google Scholar 

  30. M.Z. Ansari, W.A. Siddiqui, Deoxygenation of graphene oxide using biocompatible reducing agent Ficus carica (dried ripe fig). J. Nanostruct. Chem. 8, 431 (2018)

    Article  CAS  Google Scholar 

  31. D. Hou, Q. Liu, H. Cheng, K. Li, Graphene synthesis via chemical reduction of graphene oxide using lemon extract. J. Nanosci. Nanotechnol. 17, 6518 (2017)

    Article  CAS  Google Scholar 

  32. S. Ramanathan, E. Elanthamilan, A. Obadiah, A. Durairaj, J.P. Merlin, S. Ramasundaram, S. Vasanthkumar, Aloe vera (L.) Burm.f. extract reduced graphene oxide for supercapacitor application. J. Mater. Sci. Mater. Electron. 28, 16648 (2017)

    Article  CAS  Google Scholar 

  33. D.R. Madhuri, K. Kavyashree, A.R. Lamani, H.S. Jayanna, G. Nagaraju, S. Mundinamani, Reduction of graphene oxide by Phyllanthus Emblica as a reducing agent: a green approach for supercapacitor application. Mater. Today Proc. 49, 865 (2022)

    Article  CAS  Google Scholar 

  34. N.J. Panicker, P.P. Sahu, Green reduction of graphene oxide using phytochemicals extracted from Pomelo Grandis and Tamarindus indica and its supercapacitor applications. J. Mater. Sci. Mater. Electron. 32, 15265 (2021)

    Article  CAS  Google Scholar 

  35. H. Ekiert, J. Pajor, P. Klin, A. Rzepiela, H. Ślesak, A. Szopa, Significance of Artemisia Vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules 25, 4415 (2020)

    Article  CAS  Google Scholar 

  36. P. Chettri, V.S. Vendamani, A. Tripathi, A.P. Pathak, A. Tiwari, Self assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris. Appl. Surf. Sci. 362, 221 (2016)

    Article  CAS  Google Scholar 

  37. D.A.P. Hernández, E.R. Parra, P.J.A. Arango, B.S. Giraldo, C.D.A. Medina, Innovative method for coating of natural corrosion inhibitor based on Artemisia vulgaris. Materials 14, 2234 (2021)

    Article  Google Scholar 

  38. A. Temraz, W.H. El-Tantawy, Characterisation of antioxidant activity of extract from Artemisia vulgaris. Pak. J. Pharm. Sci. 21, 321 (2008)

    CAS  Google Scholar 

  39. S. Rai, R. Bhujel, J. Biswas, B.P. Swain, in Nanostructured materials and their applications. ed. by B.P. Swain (Springer, Singapore, 2021), p.115

    Chapter  Google Scholar 

  40. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 6, 1 (2017)

    Article  CAS  Google Scholar 

  41. N.M.S. Hidayah, W.-W. Liu, C.-W. Lai, N.Z. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 1892, 150002 (2017)

    Article  Google Scholar 

  42. K. Bansal, J. Singh, A.S. Dhaliwal, Synthesis and characterisation of Graphene Oxide and its reduction with different reducing agents. IOP Conf. Ser. Mater. Sci. Eng. 1225, 012050 (2022)

    Article  Google Scholar 

  43. W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals. Proc. R. Soc. Lond. A 88, 428 (1913)

    Article  CAS  Google Scholar 

  44. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  45. S.R. Meitei, C. Ngangbam, N.K. Singh, Microstructural and optical properties of Ag assisted β-Ga2O3 nanowires on silicon substrate. Opt. Mater. 117, 111190 (2021)

    Article  CAS  Google Scholar 

  46. A. Kaushal, S.K. Dhawan, V. Singh, Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO). AIP Conf. Proc. 2115, 030106 (2019)

    Article  CAS  Google Scholar 

  47. K. Chaudhary, M. Aadil, S. Zulfiqar, S. Ullah, S. Haider, P.O. Agboola, M.F. Warsi, I. Shakir, Graphene oxide and reduced graphene oxide supported ZnO nanochips for removal of basic dyes from the industrial effluents. Fuller. Nanotub. Carbon Nanostruct. 29, 915 (2021)

    Article  CAS  Google Scholar 

  48. R. Siburian, H. Sihotang, S.L. Raja, M. Supeno, C. Simanjuntak, New route to synthesise of Graphene Nano sheets. Orient. J. Chem. 34, 182 (2018)

    Article  CAS  Google Scholar 

  49. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439 (2019)

    Article  CAS  Google Scholar 

  50. D. Khalili, Graphene oxide: a promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolisable ketones by hydrogen peroxide/KSCN in water. New J. Chem. 40, 2547 (2016)

    Article  CAS  Google Scholar 

  51. C.H. Manoratne, S.R.D. Rosa, I.R.M. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesised from high purity vein graphite. Mater. Sci. Res. India 14, 19 (2017)

    Article  CAS  Google Scholar 

  52. N.M.N. Huynh, Z.A. Boeva, J.-H. Smått, M. Pesonen, T. Lindfors, Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticised poly(vinyl chloride) films. RSC Adv. 8, 17645 (2018)

    Article  Google Scholar 

  53. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  54. S. Rai, R. Bhujel, B.P. Swain, Electrochemical analysis of graphene oxide and reduced graphene oxide for super capacitor applications. IEEE Electron Devices Kolkata Conf. (EDKCON) 2018, 489–492 (2018). https://doi.org/10.1109/EDKCON.2018.8770433

    Article  Google Scholar 

  55. H. Martinho, C. Rettori, P.G. Pagliuso, A.A. Martin, N.O. Moreno, J.L. Sarrao, Role of the E2g phonon in the superconductivity of MgB2: a Raman scattering study. Solid State Commun. 125, 499 (2003)

    Article  CAS  Google Scholar 

  56. S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N.M. Huang, S.A. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692 (2014)

    Article  CAS  Google Scholar 

  57. W.I. Singh, S. Sinha, N.A. Devi, S. Nongthombam, S. Laha, B.P. Swain, Fabrication and characterisation of reduced graphene oxide/polyaniline/poly(caprolactone) electrospun nanofiber. Arab. J. Sci. Eng. 47, 925 (2022)

    Article  CAS  Google Scholar 

  58. F. Ghasemi, M. Jalali, A. Abdollahi, S. Mohammadi, Z. Sanaee, S. Mohajerzadeh, A high performance supercapacitor based on decoration of MoS2/reduced graphene oxide with NiO nanoparticles. RSC Adv. 7, 52772 (2017)

    Article  CAS  Google Scholar 

  59. Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C.A. Howard, D.J.L. Brett, I.P. Parkin, F. Li, Z. Guo, Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Mater. 17, 12 (2019)

    Article  Google Scholar 

  60. J. Kim, J.H. Eum, J. Kang, O. Kwon, H. Kim, D.W. Kim, Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor. Sci. Rep. 11, 1 (2021)

    Google Scholar 

  61. F.T. Johra, W.G. Jung, Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci. 357, 1911 (2015)

    Article  CAS  Google Scholar 

  62. B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423 (2012)

    Article  CAS  Google Scholar 

  63. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A Reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 226, 65 (2013)

    Article  CAS  Google Scholar 

  64. S.P. Lee, G.A.M. Ali, H.H. Hegazy, H.N. Lim, K.F. Chong, Optimizing Reduced graphene oxide aerogel for a supercapacitor. Energy Fuels 35, 4559 (2021)

    Article  CAS  Google Scholar 

  65. V. Balasubramani, S. Chandraleka, T.S. Rao, R. Sasikumar, M.R. Kuppusamy, T.M. Sridhar, Review-recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides. J. Electrochem. Soc. 167, 037572 (2020)

    Article  CAS  Google Scholar 

  66. Y. Yoon, J. Jo, S. Kim, I.G. Lee, B.J. Cho, M. Shin, W.S. Hwang, Impedance spectroscopy analysis and equivalent circuit modeling of graphene oxide solutions. Nanomaterials 7, 446 (2017)

    Article  Google Scholar 

  67. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical Interpretations of Nyquist Plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194 (2018)

    Article  CAS  Google Scholar 

  68. S.-J. Lee, H.-Y. Chung, C.G.-A. Maier, A.R. Wood, R.A. Dixon, T.J. Mabry, Estrogenic flavonoids from Artemisia vulgaris L. J. Agric. Food Chem. 46, 3325 (1998)

    Article  CAS  Google Scholar 

  69. S. Numonov, F. Sharopov, A. Salimov, P. Sukhrobov, S. Atolikshoeva, R. Safarzoda, M. Habasi, H. Aisa, Assessment of artemisinin contents in selected artemisia species from tajikistan (Central Asia). Medicines 6, 23 (2019)

    Article  CAS  Google Scholar 

  70. M. Nganthoi, K. Sanatombi, Artemisinin content and DNA profiling of Artemisia species of Manipur. S. Afr. J. Bot. 125, 9 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centre of Excellence in Advanced Materials, NIT Durgapur, for their help in procuring FESEM micrographs and XRD spectra and the Institute Instrumentation Centre, IIT Roorkee, for providing the XPS spectra. We would also like to extend our gratitude to the Sophisticated Analytical Instrument Facility (SAIF), NEHU, Shillong, for providing the TEM micrographs. We sincerely acknowledge Sikkim Manipal University for providing PhD Research Fellowship to Miss Suveksha Tamang.

Funding

The present work is funded by TMA Pai Research Fellowship, Sikkim Manipal University (Ref. No.: 118/SMU/REG/00/53/2019).

Author information

Authors and Affiliations

Authors

Contributions

ST contributed to experimental design, performance, data analysis and manuscript preparation. SR contributed to data analysis and data verification. MKM contributed to structural investigation and analysis. NKB contributed to data verification and manuscript preparation. BPS contributed to data analysis and manuscript preparation. JB performed supervision, data analysis and manuscript preparation.

Corresponding author

Correspondence to Joydeep Biswas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8279 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamang, S., Rai, S., Mondal, M.K. et al. Microwave-assisted reduction of graphene oxide using Artemisia vulgaris extract for supercapacitor application. J Mater Sci: Mater Electron 34, 575 (2023). https://doi.org/10.1007/s10854-023-09995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09995-3

Navigation