Skip to main content

Reduced Graphene Oxide for Advanced Energy Applications

  • Chapter
  • First Online:
Nanostructured Materials and their Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

This chapter includes the synthesis of reduced graphene oxide (rGO) and its applications in the field of energy. rGO has gained fame in the scientific community because it has properties similar to graphene and can be easily manufactured in large scale. rGO is synthesized by reduction of graphene oxide (GO) using simple and efficient techniques like thermal, chemical, electrochemical and hydrothermal. rGO is used as electrode, hole transport layer as well as an electron transport layer in organic solar cells. It is also used as counter electrode in dye-sensitized solar cells. Additionally, rGO serves as electrode material for supercapacitor devices exhibiting high specific capacitance and cyclic stability values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, Z., Ren, J., Zhang, Z., Chen, X., Guan, G., Qiu, L., Zhang, Y., Peng, H.: Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015)

    Article  CAS  Google Scholar 

  2. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  3. Stoller, M.D., Park, S., Yanwu, Z., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  4. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  5. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. London. 149, 249–259 (1859)

    Article  Google Scholar 

  6. Staudenmaier, L.: Verfahren zur Darstellung der Graphitsäure. Ber. Der Dtsch. Chem. Gesellschaft. 32, 1394–1399 (1899)

    Article  CAS  Google Scholar 

  7. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  8. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  9. Higginbotham, A.L., Kosynkin, D.V., Sinitskii, A., Sun, Z., Tour, J.M.: Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4, 2059–2069 (2010)

    Article  CAS  Google Scholar 

  10. McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)

    Google Scholar 

  11. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Article  CAS  Google Scholar 

  12. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    Article  CAS  Google Scholar 

  13. Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon N. Y. 47, 493–499 (2009)

    Article  CAS  Google Scholar 

  14. Li, X., Wang, H., Robinson, J.T., Sanchez, H., Diankov, G., Dai, H.: Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009)

    Article  CAS  Google Scholar 

  15. He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H.: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011)

    Article  CAS  Google Scholar 

  16. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)

    Article  CAS  Google Scholar 

  17. Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007)

    Article  CAS  Google Scholar 

  18. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  19. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  20. Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascón, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 114, 6426–6432 (2010)

    Article  CAS  Google Scholar 

  21. Chen, L., Tang, Y., Wang, K., Liu, C., Luo, S.: Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 13, 133–137 (2011)

    Article  CAS  Google Scholar 

  22. Tong, H., Zhu, J., Chen, J., Han, Y., Yang, S., Ding, B., Zhang, X.: Electrochemical reduction of graphene oxide and its electrochemical capacitive performance. J. Solid State Electrochem. 17, 2857–2863 (2013)

    Article  CAS  Google Scholar 

  23. Kar, T., Devivaraprasad, R., Singh, R.K., Bera, B., Neergat, M.: Reduction of graphene oxide – a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Adv. 4, 57781–57790 (2014)

    Article  CAS  Google Scholar 

  24. Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C. 113, 7985–7989 (2009)

    Article  CAS  Google Scholar 

  25. Fu, C., Kuang, Y., Huang, Z., Wang, X., Du, N., Chen, J., Zhou, H.: Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chem. Phys. Lett. 499, 250–253 (2010)

    Article  CAS  Google Scholar 

  26. Zhang, X., Zhang, D., Chen, Y., Sun, X., Ma, Y.: Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Chin. Sci. Bull. 57, 3045–3050 (2012)

    Article  CAS  Google Scholar 

  27. Modeshia, D.R., Walton, R.I.: Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010)

    Article  CAS  Google Scholar 

  28. Zheng, X., Peng, Y., Yang, Y., Chen, J., Tian, H., Cui, X., Zheng, W.: Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering. J. Raman Spectrosc. 48, 97–103 (2017)

    Article  CAS  Google Scholar 

  29. Park, H., Chang, S., Zhou, X., Kong, J., Palacios, T., Gradecak, S.: Flexible graphene electrode-based organic photovoltaics with record-high efficiency. ECS Trans. 69, 77–82 (2015)

    Article  CAS  Google Scholar 

  30. Manzano-Ramírez, A., López-Naranjo, E.J., Soboyejo, W., Meas-Vong, Y., Vilquin, B.: A review on the efficiency of graphene-based BHJ organic solar cells. J. Nanomater. (2015). https://doi.org/10.1155/2015/406597

    Article  Google Scholar 

  31. Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M., Zhang, H.: Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4, 5263–5268 (2010)

    Article  CAS  Google Scholar 

  32. Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F., Zhang, H.: Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6, 307–312 (2010)

    Article  CAS  Google Scholar 

  33. Po, R., Carbonera, C., Bernardi, A., Camaioni, N.: The role of buffer layers in polymer solar cells. Energy Environ. Sci. 4, 285–310 (2011)

    Article  CAS  Google Scholar 

  34. Cheng, X., Long, J., Wu, R., Huang, L., Tan, L., Chen, L., Chen, Y.: Fluorinated reduced graphene oxide as an efficient hole-transport layer for efficient and stable polymer solar cells. ACS Omega. 2, 2010–2016 (2017)

    Article  CAS  Google Scholar 

  35. Yun, J.M., Yeo, J.S., Kim, J., Jeong, H.G., Kim, D.Y., Noh, Y.J., Kim, S.S., Ku, B.C., Na, S.I.: Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Adv. Mater. 23, 4923–4928 (2011)

    Article  CAS  Google Scholar 

  36. Jeon, Y.J., Yun, J.M., Kang, M., Lee, S., Jung, Y.S., Hwang, K., Heo, Y.J., Kim, J.E., Kang, R., Kim, D.Y.: 2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Org. Electron. Phys. Mater. Appl. 59, 92–98 (2018)

    Google Scholar 

  37. Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., Denk, P.: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288–1290 (2002)

    Article  CAS  Google Scholar 

  38. Kim, J.Y., Kim, S.H., Lee, H.H., Lee, K., Ma, W., Gong, X., Heeger, A.J.: New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006)

    Article  CAS  Google Scholar 

  39. White, M.S., Olson, D.C., Shaheen, S.E., Kopidakis, N., Ginley, D.S.: Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006)

    Article  CAS  Google Scholar 

  40. Zhao, Y., Xie, Z., Qu, Y., Geng, Y., Wang, L.: Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency. Synth. Met. 158, 908–911 (2008)

    Article  CAS  Google Scholar 

  41. Mahmoudi, T., Wang, Y., Hahn, Y.B.: Graphene and its derivatives for solar cells application. Nano Energy. 47, 51–65 (2018)

    Article  CAS  Google Scholar 

  42. Jayawardena, K.D.G.I., Rhodes, R., Gandhi, K.K., Prabhath, M.R.R., Dabera, G.D.M.R., Beliatis, M.J., Rozanski, L.J., Henley, S.J., Silva, S.R.P.: Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. J. Mater. Chem. A. 1, 9922 (2013)

    Article  CAS  Google Scholar 

  43. Woo Lee, H., Young, Oh., J., Il Lee, T., Soon Jang, W., Bum Yoo, Y., Sang Chae, S., Ho Park, J., Min Myoung, J., Moon Song, K., Koo Baik, H. : Highly efficient inverted polymer solar cells with reduced graphene-oxide-zinc-oxide nanocomposites buffer layer. Appl. Phys. Lett. 102, 193903 (2013)

    Article  CAS  Google Scholar 

  44. Sharma, K., Sharma, V., Sharma, S.S.: Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 1–46 (2018)

    Article  CAS  Google Scholar 

  45. Yeh, M.H., Lin, L.Y., Chang, L.Y., Leu, Y.A., Cheng, W.Y., Lin, J.J., Ho, K.C.: Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. ChemPhysChem 15, 1175–1181 (2014)

    Article  CAS  Google Scholar 

  46. Zheng, H., Neo, C.Y., Mei, X., Qiu, J., Ouyang, J.: Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells. J. Mater. Chem. 22, 14465 (2012)

    Article  CAS  Google Scholar 

  47. Qiu, L., Zhang, H., Wang, W., Chen, Y., Wang, R.: Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Appl. Surf. Sci. 319, 339–343 (2014)

    Article  CAS  Google Scholar 

  48. Jang, H.S., Yun, J.M., Kim, D.Y., Park, D.W., Na, S.I., Kim, S.S.: Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells. Electrochim. Acta. 81, 301–307 (2012)

    Article  CAS  Google Scholar 

  49. Xu, X., Huang, D., Cao, K., Wang, M., Zakeeruddin, S.M., Grätzel, M.: Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci. Rep. 3, 1489 (2013)

    Article  CAS  Google Scholar 

  50. Yuliasari, F., Aprilia, A., Syakir, N., Safriani, L., Saragi, T., Risdiana, Hidayat, S., Bahtiar, A., Siregar, R., Fitrilawati: Characteristics of thermally reduced graphene oxide thin film as DSSC counter electrode. In: IOP Conference Series: Materials Science and Engineering, vol. 196, 012049 (2017)

    Google Scholar 

  51. Zhao, C., Zheng, W.: A review for aqueous electrochemical supercapacitors. Front. Energy Res. 3 (2015). https://doi.org/https://doi.org/10.3389/fenrg.2015.00023

  52. Salanne, M.: Ionic liquids for supercapacitor applications. Top. Curr. Chem. 375, 63 (2017)

    Article  CAS  Google Scholar 

  53. Johra, F.T., Jung, W.G.: Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci. 357, 1911–1914 (2015)

    Article  CAS  Google Scholar 

  54. Ambrosi, A., Pumera, M.: Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. Eur. J. 22, 153–159 (2016)

    Article  CAS  Google Scholar 

  55. Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W.: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sourc. 198, 423–427 (2012)

    Article  CAS  Google Scholar 

  56. Rajagopalan, B., Chung, J.S.: Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res. Lett. 9, 535 (2014)

    Article  CAS  Google Scholar 

  57. Chen, Y., Zhang, X., Zhang, D., Yu, P., Ma, Y.: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon N. Y. 49, 573–580 (2011)

    Article  CAS  Google Scholar 

  58. Lei, Z., Lu, L., Zhao, X.S.: The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5, 6391–6399 (2012)

    Article  CAS  Google Scholar 

  59. Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y., Ji, H., Murali, S., Wu, Y., Perales, S., Clevenger, B., Ruoff, R.S.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)

    Article  CAS  Google Scholar 

  60. Sahu, V., Shekhar, S., Sharma, R.K., Singh, G.: Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl. Mater. Interfaces. 7, 3110–3116 (2015)

    Article  CAS  Google Scholar 

  61. Iro, S.Z.: A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016)

    Google Scholar 

  62. Ha, T., Kim, S.K., Choi, J.W., Chang, H., Jang, H.D.: pH controlled synthesis of porous graphene sphere and application to supercapacitors. Adv. Powder Technol. 30, 18–22 (2019)

    Article  CAS  Google Scholar 

  63. Bai, Y., Rakhi, R.B., Chen, W., Alshareef, H.N.: Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sourc. 233, 313–319 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the UGC-DAE-CRS Indore (Project Ref: CRC-IC-MSR-07/CRS-215/2017-18/1296) and Dr. Ramdas Pai and Vasanthi Pai Endowment (Project Ref: SMU/ENDOW/2016-17/292/002) for providing Grant-in-Aid for Junior Research Fellowship to Ms. Sadhna Rai and Ms. Rabina Bhujel, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhna Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Bhujel, R., Biswas, J., Swain, B.P. (2021). Reduced Graphene Oxide for Advanced Energy Applications. In: Swain, B.P. (eds) Nanostructured Materials and their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8307-0_6

Download citation

Publish with us

Policies and ethics