Skip to main content
Log in

Magnetically recyclable ZnFe2O4-Fe2O3-Ag hollow nanophotocatalysts to decompose rhodamine B

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Environmental pollution and energy exhaustion threaten human existence, and the exploitation of nanocatalysts offers new efficient ways to solve the pollution and energy crisis. However, the nanophotocatalysts are difficult to recycle because of its small size and low density. In this work, the magnetically recyclable ZnFe2O4-Fe2O3-Ag hollow nanophotocatalyst was successfully prepared via the process of impregnating, calcination and photoreduction. ZnFe2O4-Fe2O3-Ag possesses a hollow nanocore-shell structure with a particle size distribution of about 240 nm and a shell thickness of about 15 nm. In the hollow nanoternary complex of ZnFe2O4-Fe2O3-Ag, ZnFe2O4 and Fe2O3 have photocatalytic properties and magnetic properties, playing a recyclable and photocatalytic role, and both of them can form a matching heterojunction each other, which can further improve the photodegradation performance. Ag can capture electrons to inhibit photogenerated carrier recombination. The hollow core-shell structure can improve the utilization rate of light and the contact frequency with pollutants. The results of the photocatalytic activity to decompose rhodamine B under visible light irradiation as driving force reveal the sequence: ZnFe2O4-Fe2O3-Ag > ZnFe2O4-Fe2O3 > ZnFe2O4. ZnFe2O4-Fe2O3-Ag can be conveniently separated from water in magnetic environment and recycled. This work also affords a new method to prepare ZnFe2O4-based hollow nanoatalysts with facile recovery and form an excellent ternary composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable.

References

  1. X. Yang, J. Tian, Y. Guo et al., ZnO nano-rod arrays synthesized with exposed {0001} facets and the investigation of photocatalytic activity. Crystals 11, 522 (2021)

    Article  CAS  Google Scholar 

  2. T. Liu, L. Wang, X. Liu et al., Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem. Eng. J. 379, 122379 (2020)

    Article  CAS  Google Scholar 

  3. L. Han, P. Zhang, L. Li et al., Nitrogen-containing carbon nano-onions-like and graphene-like materials derived from biomass and the adsorption and visible photocatalytic performance. Appl. Surf. Sci. 543, 148752 (2021)

    Article  CAS  Google Scholar 

  4. H. Fang, B. Wu, X. Sheng et al., A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 47, 1656–1668 (2021)

    Article  Google Scholar 

  5. J.M.D. Rodríguez, E.P. Melián, Nano-photocatalytic materials: possibilities and challenges. Nanomaterials 11, 668 (2021)

    Google Scholar 

  6. Z. Jiang, C. Xiao, X. Yin et al., Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability. Ceram. Int. 46, 10771–10778 (2020)

    Article  CAS  Google Scholar 

  7. Y. Wang, F. Xin, Y. Ideng et al., Nano-Zn2SnO4/reduced graphene oxide composites for enhanced photocatalytic performance. Mater. Chem. Phys. 254, 123505 (2020)

    Article  CAS  Google Scholar 

  8. P. Cao, Z. Zhang, X. Bai et al., Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity. J. Mol. Struct. 1254, 132339 (2022)

    Article  CAS  Google Scholar 

  9. C. Peng, Y. Liu, J. Cui et al., Preparation and photocatalytic activity of silver phosphate modified by nano-silver metal. Digest J. Nanomater. Biostruct. 15, 991–999 (2021)

    Google Scholar 

  10. D.M. Imran, N. Jawayria, H. Zaib et al., Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorg. Nano-Metal Chem. 50, 613–619 (2020)

    Article  Google Scholar 

  11. Z. Guo, C. Huang, A.Y. Chen, Experimental study on photocatalytic degradation eflciency of mixed crystal nano-TiO2 concrete. Nanatechnol. Rev. 9, 219–229 (2020)

    Article  CAS  Google Scholar 

  12. H.S. Jarusheh, A. Yusuf, F. Banat et al., Integrated photocatalytic technologies in water treatment using ferrites nanoparticles. J. Environ. Chem. Eng. 10, 108204 (2022)

    Article  CAS  Google Scholar 

  13. Z.H. Jabbar, S.E. Ebrahim, Synthesis, characterization, and photocatalytic degradation activity of core/shell magnetic nanocomposites (Fe3O4@SiO2@Ag2WO4@Ag2S) under visible light irradiation. Opt. Mater. 122, 111818 (2021)

    Article  CAS  Google Scholar 

  14. A. Lassoued, J. Li, Structure and optical, magnetic and photocatalytic properties of Cr3+ substituted zinc nano-ferrites. J. Mol. Struct. 1262, 133021 (2022)

    Article  CAS  Google Scholar 

  15. Y. Cui, J. Zheng, Z. Wang et al., Magnetic induced fabrication of core-shell structure Fe3O4@TiO2 photocatalytic membrane: enhancing photocatalytic degradation of tetracycline and antifouling performance. J. Environ. Chem. Eng. 9, 106666 (2021)

    Article  CAS  Google Scholar 

  16. A. Navidpour, M. Fakhrzad, Photocatalytic and magnetic properties of ZnFe2O4 nanoparticles synthesised by mechanical alloying. Int. J. Environ. Anal. Chem. 102, 690–706 (2022)

    Article  CAS  Google Scholar 

  17. J. Luo, Y. Wu, X. Chen et al., Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal. J. Alloys Compd. 910, 164954 (2022)

    Article  CAS  Google Scholar 

  18. L. Nguyen, D. Vo, L. Nguyen et al., Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of rhodamine B under visible-light illumination. Evironmental Technol. Innov. 25, 102130 (2022)

    CAS  Google Scholar 

  19. W. Zhao, Y. Huang, C. Su et al., Fabrication of magnetic and recyclable In2S3/ZnFe2O4 nanocomposites for visible light photocatalytic activity enhancement. Materals Res. Exp. 7, 015080 (2020)

    Article  CAS  Google Scholar 

  20. C. Zhang, X. Han, F. Wang et al., A facile fabrication of ZnFe2O4/Sepiolite composite with excellent photocatalytic performance on the removal of tetracycline hydrochloride. Oiginal Res. 9, 736369 (2021)

    CAS  Google Scholar 

  21. Z. Azam, S.M. Seyed, M. Alireza, Synthesis, characterization and investigation of photocatalytic activity of ZnFe2O4@MnO-GO and ZnFe2O4@MnO-rGO nanocomposites for degradation of dye Congo red from wastewater under visible light irradiation. Res. Chem. Intermed. 46, 33–61 (2020)

    Article  Google Scholar 

  22. M. Bohra, V. Alman, R. Arras, Nanostructured ZnFe2O4: an exotic energy material. Nanomaterials 11, 1–24 (2021)

    Article  Google Scholar 

  23. D. Wang, J. Chen, H. Che et al., Flexible g-C3N4-based photocatalytic membrane for efficient inactivation of harmful algae under visible light irradiation. Appl. Surf. Sci. 60, 154270 (2022)

    Article  Google Scholar 

  24. M.M. Faisal, A. Ejaz, A. Mukhtar et al., Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites. Mater. Sci. Semiconduct. Process 120, 105278 (2020)

    Article  Google Scholar 

  25. X. Cheng, L. Li, L. Jia et al., Preparation of K+ doped ZnO nanorods with enhanced photocatalytic performance under visible light. J. Phys. D-Appl. Phys. 53, 035301 (2020)

    Article  CAS  Google Scholar 

  26. Z. Li, L. Zhou, L. Lu, Enhanced photocatalytic properties of ZnO/Al2O3 nanorod heterostructure. Mater. Res. Exp. 8, 045505 (2021)

    Article  CAS  Google Scholar 

  27. B. Yu, H. Yu, B. Song, Preparation and Study of ZnAl2O4/CeO2 water remediation photocatalyst and its photocatalytic activity. Rus. Phys. Chem. A 95, 2523–2529 (2021)

    Article  CAS  Google Scholar 

  28. S. Hussain, S. Hussain, A. Waleed et al., Spray pyrolysis deposition of ZnFe2O4/Fe2O3 Composite Thin Films on hierarchical 3-D nanospikes for efficient photoelectrochemical oxidation of Water. J. Phys. Chem. C 121, 18360–18368 (2017)

    Article  CAS  Google Scholar 

  29. X. Zhang, B. Lin, X. Li et al., MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chem. Eng. J. 430, 132728 (2022)

    Article  CAS  Google Scholar 

  30. P. Wei, S. Yin, T. Zhou et al., Rational design of Z-scheme ZnFe2O4/Ag@Ag2CO3 hybrid with enhanced photocatalytic activity, stability and recovery performance for tetracycline degradation. Sep. Purif. Technol. 266, 118544 (2021)

    Article  CAS  Google Scholar 

  31. Z.X. Liu, Q.Q. Yu, J. Liu et al., Enhanced visible photocatalytic activity in flower-like CuO-WO3-Bi2WO6 ternary hybrid through the cascadal electron transfer. Micro Nano Lett. 12, 195–200 (2017)

    Article  CAS  Google Scholar 

  32. X. Yuan, L. Jiang, X. Chen et al., Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation. Environ. Sci.: Nano 4, 2175–2185 (2017)

    CAS  Google Scholar 

  33. X. Wu, Y. Hu, Y. Wang et al., In-situ synthesis of Z-scheme Ag2CO3/Ag/AgNCO heterojunction photocatalyst with enhanced stability and photocatalytic activity. Appl. Surf. Sci 464, 108–114 (2019)

    Article  CAS  Google Scholar 

  34. T. Sobahi, M. Amin, Synthesis of ZnO/ZnFe2O4/Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity. Ceram. Int. 46, 3558–3564 (2020)

    Article  CAS  Google Scholar 

  35. C. Shipra, B. Aditi, M. Satyabrata, Microwave-assisted synthesis of alpha-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures for photocatalytic applications. Ceram. Int. 47, 3833–3841 (2021)

    Article  Google Scholar 

  36. M.O. Abdalla, A. Ludwick, Boron-modified phenolic resins for high performance applications. Polymer 44, 7353–7359 (2003)

    Article  CAS  Google Scholar 

  37. S. Ito, P. Chen, P. Comte, Fabrication of Screen-Printing Pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovoltaics Res. Appl. 15, 603–612 (2007)

    Article  CAS  Google Scholar 

  38. Z. Zhang, L. Li, Y. Jiang et al., Step-Scheme Photocatalyst of CsPbBr3 Quantum Dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 61, 3351–3360 (2022)

    Article  CAS  Google Scholar 

  39. D. Li, J. Zhou, Z. Zhang et al., Enhanced photocatalytic activity for CO2 reduction over a CsPbBr3/CoAl-LDH composite: insight into the S-Scheme charge transfer mechanism. ACS Appl. Energy Mater. 5, 6238–6247 (2022)

    Article  CAS  Google Scholar 

  40. Z. Zhang, Y. Jiang, Z. Dong et al., 2D/2D Inorganic/Organic hybrid of lead-free Cs2AgBiBr6 double Perovskite/Covalent triazine frameworks with boosted charge separation and efficient CO2 photoreduction. Inorg. Chem. 61, 16028–16037 (2022)

    Article  CAS  Google Scholar 

  41. X. Wang, J. Feng, Z.Q. Zhang et al., Pt enhanced the photo-Fenton activity of ZnFe2O4/alpha-Fe2O3 heterostructure synthesized via one-step hydrothermal method. J. Colloid Interface Sci 561, 793–800 (2020)

    Article  CAS  Google Scholar 

  42. X.H. Zhang, B.Y. Lin, X.Y. Li et al., MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chem. Eng. J. 430, 132728 (2022)

    Article  CAS  Google Scholar 

  43. N.N. Yang, P.F. Hu, C.C. Chen et al., Ternary Composite of g-C3N4/ZnFe2O4/Fe2O3: hydrothermal synthesis and enhanced photocatalytic performance. ChemistrySelect 4, 7308–7316 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

I am grateful for the financial support of the 2022 General Special Scientific Research Program of Shaanxi Provincial Department of Education and the 2023 research project of Shaanxi Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Zhenxing Liu completes all the work of the study.

Corresponding author

Correspondence to Zhenxing Liu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest in this paper.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. Magnetically recyclable ZnFe2O4-Fe2O3-Ag hollow nanophotocatalysts to decompose rhodamine B. J Mater Sci: Mater Electron 34, 413 (2023). https://doi.org/10.1007/s10854-023-09849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09849-y

Navigation