Skip to main content
Log in

Temperature- and frequency-dependent dielectric and impedance spectroscopy of double perovskite oxide BiBa0.5Ag0.5Ni2O6 electronic material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The objective of this research is to develop perovskite compounds with electrical and dielectric properties that can be used in technological applications including magnetism, health, and electronic devices. Polycrystalline of double perovskite BiBa0.5Ag0.5Ni2O6 was successfully synthesized by sol–gel method. Preliminary X-ray investigation established at room temperature the formation of compound with rhombohedral structure of the R\(\overline{3 }\)C space group. The uniform grain distribution and chemical composition are predicted from the scanning electron microscope and energy-dispersive X-ray technique, which has an average grain size of 563 nm. Electrical properties electrical depends on temperature and frequency. Impedance spectroscopy and electrical modulus of the compound were analyzed by impedance analyzer in the range of frequency (1 kHz–1 MHz) and temperature (200–400 K) that confirmi non-Debye type of relaxation. In addition, the frequency dependence of the electrical conductivity of material prepared at different temperatures was studied using Jonscher’s law. The conduction and relaxation mechanisms remain same in the entire temperature range. From these results, it may be concluded that this compound may have extreme potential applications at different temperatures, for example in the electrical field, in capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2962 (2016)

    Article  CAS  Google Scholar 

  3. A.K. Paul, M. Reehuis, V. Ksenofontov, B.H. Yan, A. Hoser, D.M. Többens, P.M. Abdala, P. Adler, M. Jansen, C. Felser, Phys. Rev. Lett. 111, 1 (2013)

    Article  Google Scholar 

  4. M. Saxena, K. Tanwar, T. Maiti, Scr. Mater. 130, 205 (2017)

    Article  CAS  Google Scholar 

  5. S. Bhuyan, K. Sivanand, S.K. Panda, R. Kumar, J. Hu, IEEE Magn. Lett. 2, 6000204 (2011)

    Article  Google Scholar 

  6. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016)

    Article  CAS  Google Scholar 

  7. X. Gao, D. Xu, J. Du, J. Li, Z. Yang, J. Sun, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8017-9

    Article  Google Scholar 

  8. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  Google Scholar 

  9. S. Halder, S. Bhuyan, S.N. Das, S. Sahoo, R.N.P. Choudhary, P. Das, K. Parida, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1406-3

    Article  Google Scholar 

  10. H.J. Feng, F.M. Liu, Phys. Lett. A 372, 1904 (2008)

    Article  CAS  Google Scholar 

  11. O.E. Rhazouani, A. Slassi, Y. Ziat, A. Benyoussef, Phys. Lett. A 381, 1177 (2017)

    Article  Google Scholar 

  12. E. Fresia, L. Katz, R. Ward, J. Am. Chem. Soc. 81, 4783–4785 (1959)

    Article  CAS  Google Scholar 

  13. M.D.C. Viola, M. Martinez-Lope, J. Alonso, P. Velasco, J. Martinez, J. Pedregosa, R. Carbonio, M. Fernández-Díaz, Chem. Mater. 14, 812–818 (2002)

    Article  CAS  Google Scholar 

  14. I.P. Muthuselvam, A. Poddar, R. Bhowmik, arXiv preprint https://arxiv.org/abs/0811.1876. (2008)

  15. C. Ritter, M. Ibarra, L. Morellon, J. Blasco, J. Garcia, J. De Teresa, J. Phys.: Condens. Matter 12, 8295 (2000)

    CAS  Google Scholar 

  16. P. Liang, J.-J. Jiang, X.-G. Ma, B. Tian, Trans. Nonferr. Met. Soc. China 17, s109–s112 (2007)

    CAS  Google Scholar 

  17. K. IbenNassar, N. Rammeh, S.S. Teixeira, M.P.F. Graça, J. Electron. Mater. 51, 370–377 (2022)

    Article  CAS  Google Scholar 

  18. M. Mohamed, K. IbenNassar, M. Mohamed, N. Rammeh, M.P.F. Graça, J. Mol. Struct. 1258, 132658 (2022)

    Article  CAS  Google Scholar 

  19. K. IbenNassar, M. Slimi, N. Rammeh, S. SoretoTeixeira, M.P.F. Graça, Appl. Phys. A 127, 940 (2021)

    Article  CAS  Google Scholar 

  20. K. IbenNassar, M. Slimi, N. Rammeh, A. Bouhamed, A. Njeh, O. Kanoun, J. Mater. Sci. Mater. Electron. 32, 24050–24057 (2021)

    Article  Google Scholar 

  21. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  22. J. Rodriguez-Carbajal, Program FullProf. Laboratoire Léon Brillouin (CEACNRS), version 3.5d, LLB-JRS (1998)

  23. D. Gherca, A. Pui, V. Nica, O. Caltun, N. Cornei, J. Ceram. Int. 40, 9599–9607 (2014)

    Article  CAS  Google Scholar 

  24. S. Verma, J. Chand, K.M. Batoo, M. Singh, J. Alloys Compd. 565, 148–153 (2013)

    Article  CAS  Google Scholar 

  25. S. Hcini, N. Kouki, A. Omri, A. Dhahri, M.L. Bouazizi, J. Magn. Magn. Mater. 464, 91–102 (2018)

    Article  CAS  Google Scholar 

  26. K.I. Nassar, N. Rammeh, S.S. Teixeira et al., Appl. Phys. A 128, 373 (2022)

    Article  CAS  Google Scholar 

  27. K. Jonscher, A. Husain, J. Phys. B: Condens. Matter 217, 29–34 (1996)

    Article  CAS  Google Scholar 

  28. G. Claude, Electrochim Acta 331, 135324 (2020)

    Article  Google Scholar 

  29. E. Barsoukov, D.H. Kim, H.-S. Lee, H. Lee, M. Yakovleva, Y. Gao, J.F. Engel, J. Solid State Ion. 161, 19–29 (2003)

    Article  CAS  Google Scholar 

  30. E. Barsoukov, J.R. Macdonald, (Wiley, New York, 2005)

  31. L. Singh, I.W. Kim, B.C. Sin, S.K. Woo, S.H. Hyun, K.D. Mandal, Y. Lee, Powder Technol. 280, 256–265 (2015)

    Article  CAS  Google Scholar 

  32. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Status Solidi A 201, 588 (2004)

    Article  CAS  Google Scholar 

  33. A. Omri, M. Bejar, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173–178 (2012)

    Article  CAS  Google Scholar 

  34. M.M. Costa, G.F.M. PiresJúnior, A.S.B. Sombra, Mater. Chem. Phys. 123, 35–39 (2010)

    Article  CAS  Google Scholar 

  35. K.S. Cole, R.H. Cole, Chem. Phys. B41, 9 (1941)

    Google Scholar 

  36. D. Johnson, Z-view, Impedance Software, Version 2.1a, Scribner Associates Inc, (1990–1998)

  37. P. Cordoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, Electrochim. Acta 72, 172–178 (2012)

    Article  CAS  Google Scholar 

  38. B. Hirschorn, M.E. Orazema, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta 55, 6218–6226 (2010)

    Article  CAS  Google Scholar 

  39. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, J. Alloys Compd. 453, 325–331 (2008)

    Article  CAS  Google Scholar 

  40. N. Chihaoui, M. Bejar, E. Dhahri, M.A. Valente, L.C. Costa, M.P.F. Graça, Int. J. Mater. Eng. Technol. 13, 129 (2015)

    Article  CAS  Google Scholar 

  41. R. James, C. Parkash, G. Prasad, J. Phys. D: Appl. Phys. 39, 1635 (2006)

    Article  CAS  Google Scholar 

  42. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion. 146, 329 (2002)

    Article  CAS  Google Scholar 

  43. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  44. A. Ghosh, Phys. Rev. B 41, 1479 (1990)

    Article  CAS  Google Scholar 

  45. M.P.F. Garça, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, J. Non-Cryst. Solids 353, 4390–4394 (2007)

    Article  Google Scholar 

  46. M.D. Migahed, N.A. Bakr, M.I. Abdel-Hamid, O.E.L. Hannafy, M. El-Nimr, J. Appl. Polym. Sci. 59, 655–662 (1996)

    Article  CAS  Google Scholar 

  47. I. Ali, M. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, G. Murtaza, J. Magn. Magn. Mater. 362, 115–121 (2014)

    Article  CAS  Google Scholar 

  48. H. Kolodziej, L. Sobczyk, Acta Phys. Pol. A 39, 59 (1971)

    CAS  Google Scholar 

  49. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Electrochim. Acta 46, 1829 (2001)

    Article  CAS  Google Scholar 

  50. T.P.S. Bharti, Solid Stat. Sci. 12, 498 (2010)

    Article  CAS  Google Scholar 

  51. T.P.S. Dutta, Phys. B 405, 1475 (2010)

    Article  CAS  Google Scholar 

  52. L.L. Hench, J.K. West, (Wiley, New York, 1990), p. 18946

  53. H.T. Martirena, J.C. Burfoot, J. Ferroelectr. 7, 151 (1974)

    Article  CAS  Google Scholar 

  54. M. Bakr Mohamed, H. Wang, H. Fuess, Phys. D: Appl. Phys. 43, 409–455 (2010)

    Article  Google Scholar 

  55. E. Omri, M. Dhahri, L.C.C. Es-Souni, J. Alloys Compd. 497, 173 (2012)

    Article  Google Scholar 

  56. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, Grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors take public responsibility for the content of the work submitted for review. The contributions of all authors must be described in the following manner: The authors confirm contribution to the paper as follows: study conception and design: KIN and FT; data collection: MS; analysis and interpretation of results: NR and AN; draft manuscript preparation: SST and MPFG. All authors reviewed the results and approved the final version of the manuscript. The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to K. Iben Nassar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iben Nassar, K., Tayari, F., Slimi, M. et al. Temperature- and frequency-dependent dielectric and impedance spectroscopy of double perovskite oxide BiBa0.5Ag0.5Ni2O6 electronic material. J Mater Sci: Mater Electron 34, 216 (2023). https://doi.org/10.1007/s10854-022-09746-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09746-w

Navigation