Skip to main content
Log in

Impact of multiple cations doping on Zn–Sn–Se nanostructures for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ever evolving of electronic devices and systems has prompted companies in the electronic industry sector to urge researchers to explore novel optoelectronic materials of excellent quality and acceptable prices in line with the requirements of the modern era. In this scene, a pure ternary Zn–Sn–Se nanocomposite was fabricated and characterized. The doping and co-doping with metal cations such as Ca2+, Mn2+, and Cr3+, namely Ca-ZTSe, Ca/Mn-ZTSe, and Ca/Mn/Cr-doped ZTSe have been implemented via solvothermal technique. The structural, functional, and morphological features were fully characterized by XRD, FESEM/EDS, HRTEM, FTIR, and XPS. Collected data of XRD resembled a solid solution of two mixed phases (cubic ZnSe and trigonal SnSe2) in all nanomaterials, and a significant drop in particle size was detected in the doped ZTSe nanomaterials. FTIR studies revealed that doping of ZTSe with single Ca2+ or triple Ca2+/Mn2+/Cr3+ exhibits a strong intensification in the octahedral band, while the double Ca2+/Mn2+ doping leads to a significant quenching in the octahedral band suggesting the localization of Ca2+/Mn2+ into the tetrahedral site in the ZTSe lattice. Pristine ZTSe particles appeared as microspheres dispersed between the layers of SnSe2. The main electronic bandgap values of pure ZTSe were increased from 1.70 to 1.83 eV accompanied by a pronounced diminution in particle size and lattice distortion with increasing doping number. Although the pure ZTSe sample exhibited six peaks at the visible region (470, 498, 557, 626, 696, and 717 nm), and two peaks (775, and 830 nm) in the infra-red region, ternary cations-doped ZTSe displayed the best photoluminescence characteristics for optoelectronic applications. Mott-Schottky measurements revealed a significant type of inversion behavior as a result of the triple-cations-doping effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article.

References

  1. V.S. Bhat, A. Toghan, G. Hegde, R.S. Varma, Capacitive dominated charge storage in supermicropores of self-activated carbon electrodes for symmetric supercapacitors. J. Energy Storage 52, 104776 (2022). https://doi.org/10.1016/j.est.2022.104776

    Article  Google Scholar 

  2. M.M.S. Sanad, S.W. Arafat, Z.K. Heiba, H. Elshimy, Structural characterization and electrochemical performance of Ni-doped Co9S8 for Li-ion battery and asymmetric supercapacitor dual applications. Physica B 630, 413707 (2022). https://doi.org/10.1016/j.physb.2022.413707

    Article  CAS  Google Scholar 

  3. R. Xu, X. Wang, C. Zhang, Y. Zhang, H. Jiang, H. Wang, G. Su, M. Huang, A. Toghan, Engineering solid–liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chem. Eng. J. 433, 133685 (2022). https://doi.org/10.1016/j.cej.2021.133685

    Article  CAS  Google Scholar 

  4. M.M.S. Sanad, A. Toghan, Chemical activation of nanocrystalline LiNbO3 anode for improved storage capacity in lithium-ion batteries. Surf. Interfaces 27, 101550 (2022). https://doi.org/10.1016/j.surfin.2021.101550

    Article  CAS  Google Scholar 

  5. G. He, Y. Ling, H. Jiang, A. Toghan, Barium titanate as a highly stable oxygen permeable membrane reactor for hydrogen production from thermal water splitting. ACS Sustain. Chem. Eng. 9(33), 11147 (2021). https://doi.org/10.1021/acssuschemeng.1c03118

    Article  CAS  Google Scholar 

  6. J. Li, H. Zhao, Y. Lei, Q. Yang, Z. Zheng, Synthesis and photocatalytic properties of SnSe2/Se heterojunction films. NANO 13(04), 1850045 (2018). https://doi.org/10.1142/s1793292018500455

    Article  CAS  Google Scholar 

  7. M.M.S. Sanad, A.M. Elseman, M.M. Elsenety, M.M. Rashad, B.A. Elsayed, Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30(7), 6868–6875 (2019). https://doi.org/10.1007/s10854-019-01001-z

    Article  CAS  Google Scholar 

  8. K. Thakar, S. Lodha, Optoelectronic and photonic devices based on transition metal dichalcogenides. Mater. Res. Express 7(1), 014002 (2020). https://doi.org/10.1088/2053-1591/ab5c9c

    Article  CAS  Google Scholar 

  9. M.M.S. Sanad, A.Y. Shenouda, Impact of sulphur-containing compounds on the electrochemical capabilities of spinel carbon-coated Sb2SnS4 nano-sheets as alternative anodes in lithium ion batteries. J. Mater. Sci.: Mater. Electron. 32(15), 20489–20498 (2021). https://doi.org/10.1007/s10854-021-06558-2

    Article  CAS  Google Scholar 

  10. C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.-Q. Lan, J. Bao, J. Zhu, Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 8(4), 3761–3770 (2014). https://doi.org/10.1021/nn5004315

    Article  CAS  Google Scholar 

  11. P.D. Matthews, P.D. McNaughter, D.J. Lewis, P. O’Brien, Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem. Sci. 8(6), 4177–4187 (2017). https://doi.org/10.1039/c7sc00642j

    Article  CAS  Google Scholar 

  12. Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou, W. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317 (2017). https://doi.org/10.1002/adfm.201702317

    Article  CAS  Google Scholar 

  13. A.R. Tapa, W. Xiang, X. Zhao, Metal chalcogenides (MxEy; E = S, Se, and Te) as counter electrodes for dye-sensitized solar cells: an overview and guidelines. Adv. Energy Sustain. Syst. Res. 2(10), 2100056 (2021). https://doi.org/10.1002/aesr.202100056

    Article  CAS  Google Scholar 

  14. D.D. Hile, H.C. Swart, S.V. Motloung, R.E. Kroon, K.O. Egbo, L.F. Koao, The effect of annealing time on zinc selenide thin films deposited by photo-assisted chemical bath deposition. J. Phys. Chem. Solids 140, 109381 (2020). https://doi.org/10.1016/j.jpcs.2020.109381

    Article  CAS  Google Scholar 

  15. K. Yadav, N. Jaggi, Effect of Ag doping on structural and optical properties of ZnSe nanophosphors. Mater. Sci. Semicond. Process. 30, 376–380 (2015). https://doi.org/10.1016/j.mssp.2014.09.044

    Article  CAS  Google Scholar 

  16. F. Qiao, R. Kang, Q. Liang, Y. Cai, J. Bian, X. Hou, Tunability in the optical and electronic properties of ZnSe microspheres via Ag and Mn doping. ACS Omega 4(7), 12271–12277 (2019). https://doi.org/10.1021/acsomega.9b01539

    Article  CAS  Google Scholar 

  17. G. Bakiyaraj, R. Dhanasekaran, Synthesis and characterization of flower-like ZnSe nanostructured thin films by chemical bath deposition (CBD) method. Appl. Nanosci. 3(2), 125–131 (2012). https://doi.org/10.1007/s13204-012-0075-y

    Article  CAS  Google Scholar 

  18. A.J. Ahamed, K. Ramar, P.V. Kumar, Synthesis and characterization of ZnSe nanoparticles by Co-precipitation method. J. Nanosci. Nanotechnol. 2(3), 148–150 (2016)

    Google Scholar 

  19. M.F. Gromboni, L.H. Mascaro, Optical and structural study of electrodeposited zinc selenide thin films. J. Electroanal. Chem. 780, 360–366 (2016). https://doi.org/10.1016/j.jelechem.2016.04.037

    Article  CAS  Google Scholar 

  20. L. Wang, M. Lu, X. Wang, Y. Yu, X. Zhao, P. Lv, H. Song, X. Zhang, L. Luo, C. Wu, Y. Zhang, J. Jie, Tuning the p-type conductivity of ZnSe nanowiresvia silver doping for rectifying and photovoltaic device applications. J. Mater. Chem. A 1(4), 1148–1154 (2013). https://doi.org/10.1039/c2ta00471b

    Article  CAS  Google Scholar 

  21. K. Matras-Postołek, S. Sovinska, A. Węgrzynowicz, Synthesis and characterization of ZnSe and ZnSe: Mn nanosheets and microflowers with high photoactive properties by microwave-assisted method. Chem. Eng. Process. 135, 204–216 (2019). https://doi.org/10.1016/j.cep.2018.11.022

    Article  CAS  Google Scholar 

  22. A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi, R. Schneider, Water-based route to colloidal Mn-doped ZnSe and Core/Shell ZnSe/ZnS quantum dots. Inorg. Chem. 49(23), 10940–10948 (2010). https://doi.org/10.1021/ic101302q

    Article  CAS  Google Scholar 

  23. V. Sharma, M.S. Mehata, A parallel investigation of un-doped and manganese ion-doped zinc selenide quantum dots at cryogenic temperature and application as an optical temperature sensor. Mater. Chem. Phys. 276, 125349 (2022). https://doi.org/10.1016/j.matchemphys.2021.125349

    Article  CAS  Google Scholar 

  24. I.L. Ikhioya, E.O. Onah, M. Maaza, F.I. Ezema, Influence of precursor pH on the optical and electrical properties of electrochemically deposited cobalt-doped ZnSe thin films for photovoltaic application. Curr. Res. Green Sustain. Chem. 5, 100286 (2022). https://doi.org/10.1016/j.crgsc.2022.100286

    Article  CAS  Google Scholar 

  25. B. Setera, C.-H. Su, B. Arnold, F.-S. Choa, L. Kelly, R. Sood, N.B. Singh, Comparative study of bulk and nanoengineered doped ZnSe. Crystals 12(1), 71 (2022). https://doi.org/10.3390/cryst12010071

    Article  CAS  Google Scholar 

  26. P.G. Jadhav, Synthesis and characterization of zinc selenide thin films by vacuum deposition technique. Int. J. Res. Appl. Sci. Eng. Technol. 7(4), 1113–1116 (2019). https://doi.org/10.22214/ijraset.2019.4199

    Article  Google Scholar 

  27. I.L. Ikhioyaa, D.N. Okolic, A.J. Ekpunobic, Electrochemical deposition of tin doped zinc selenide (SnZnSe) thin film material. Asian J. Nanosci. Mater. 3, 189–202 (2020). https://doi.org/10.26655/AJNANOMAT.2020.3.3

    Article  Google Scholar 

  28. R. Chandramohan, A. Kathalingam, K. Kumar, D. Kalyanaraman, T. Mahalingam, Studies on electrosynthesized semiconducting zinc selenide thin films. Ionics 10(3–4), 297–299 (2004). https://doi.org/10.1007/bf02382834

    Article  CAS  Google Scholar 

  29. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Electrochemically synthesis and optoelectronic properties of Pb- and Zn-doped nanostructured SnSe films. Appl. Surf. Sci. 443, 345–353 (2018). https://doi.org/10.1016/j.apsusc.2018.03.011

    Article  CAS  Google Scholar 

  30. Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du, Q. Liang, Z. Li, K.A. Khor, K. Hippalgaonkar, J. Xu, Q. Yan, C. Wolverton, M.G. Kanatzidis, n-Type SnSe2 oriented-nanoplate-based pellets for high thermoelectric performance. Adv. Energy Mater. 8(8), 1702167 (2017). https://doi.org/10.1002/aenm.201702167

    Article  CAS  Google Scholar 

  31. P. Tan, X. Chen, L. Wu, Y.Y. Shang, W. Liu, J. Pan, X. Xiong, Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: towards visible light driven photocatalyst with enhanced performance. Appl. Catal. B 202, 326–334 (2017). https://doi.org/10.1016/j.apcatb.2016.09.033

    Article  CAS  Google Scholar 

  32. J. Sun, S. Liu, C. Wang, Y. Bai, G. Chen, Q. Luo, F. Ma, Interface tuning charge transport and enhanced thermoelectric properties in flower-like SnSe2 hierarchical nanostructures. Appl. Surf. Sci. 510, 145478 (2020). https://doi.org/10.1016/j.apsusc.2020.145478

    Article  CAS  Google Scholar 

  33. J. Mu, D. Luo, H. Miao, J. Fan, X. Hu, Synergistic wide spectrum response and directional carrier transportation characteristics of Se/SnSe2/TiO2 multiple heterojunction for efficient photoelectrochemical simultaneous degradation of Cr (VI) and RhB. Appl. Surf. Sci. 542, 148673 (2021). https://doi.org/10.1016/j.apsusc.2020.148673

    Article  CAS  Google Scholar 

  34. S. Veeralingam, P. Sahatiya, S. Badhulika, Low cost, flexible and disposable SnSe2 based photoresponsive ammonia sensor for detection of ammonia in urine samples. Sens. Actuators B 297, 126725 (2019). https://doi.org/10.1016/j.snb.2019.126725

    Article  CAS  Google Scholar 

  35. Q. Pan, T. Li, D. Zhang, Ammonia gas sensing properties and density functional theory investigation of coral-like Au-SnSe2 Schottky junction. Sens. Actuators B 332, 129440 (2021). https://doi.org/10.1016/j.snb.2021.129440

    Article  CAS  Google Scholar 

  36. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin, B. Zhou, A. Jain, Y. Pei, Promising thermoelectric performance in van der Waals layered SnSe2. Mater. Today Phys. 3, 127–136 (2017). https://doi.org/10.1016/j.mtphys.2017.10.001

    Article  Google Scholar 

  37. G. Bang, J.H. Ryu, K. Lee, Study on the carrier transport mechanism in single-crystalline Br-doped SnSe2. J. Phys. Chem. Solids 146, 109628 (2020). https://doi.org/10.1016/j.jpcs.2020.109628

    Article  CAS  Google Scholar 

  38. S. Wu, C. Liu, Z. Wu, L. Miao, J. Gao, X. Hu, J. Chen, Y. Zheng, X. Wang, C. Shen, H. Yang, X. Zhou, Realizing tremendous electrical transport properties of polycrystalline SnSe2 by Cl-doped and anisotropy. Ceram. Int. 45(1), 82–89 (2019). https://doi.org/10.1016/j.ceramint.2018.09.136

    Article  CAS  Google Scholar 

  39. C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, N. Som, P.K. Jha, Investigation of morphological and structural properties of V incorporated SnSe2 single crystals. Mater. Sci. Semicond. Process. 80, 137–142 (2018). https://doi.org/10.1016/j.mssp.2018.02.023

    Article  CAS  Google Scholar 

  40. H. Chen, Y. Guo, P. Ma, R. Hu, R. Khatoon, Y. Lu, H. Zhu, J. Lu, Hydrothermal synthesis of Cu-doped SnSe2 nanostructure for efficient lithium storage. J. Electroanal. Chem. 847, 113205 (2019). https://doi.org/10.1016/j.jelechem.2019.113205

    Article  CAS  Google Scholar 

  41. Z.X. Huang, B. Liu, D. Kong, Y. Wang, H.Y. Yang, SnSe2 quantum Dot/rGO composite as high performing lithium anode. Energy Storage Mater. 10, 92–101 (2018). https://doi.org/10.1016/j.ensm.2017.08.008

    Article  Google Scholar 

  42. P. Liu, J. Han, K. Zhu, Z. Dong, L. Jiao, Heterostructure SnSe2 /ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv. Energy Mater. 10(24), 2000741 (2020). https://doi.org/10.1002/aenm.202000741

    Article  CAS  Google Scholar 

  43. M.S. Eraky, M.M.S. Sanad, E.M. El-Sayed, A.Y. Shenouda, E.-S. El-Sherefy, Phase transformation and photoelectrochemical characterization of Cu/Bi and Cu/Sb based selenide alloys as promising photoactive electrodes. AIP Adv. 9(11), 115115 (2019). https://doi.org/10.1063/1.5120318

    Article  CAS  Google Scholar 

  44. D. Martínez-Escobar, M. Ramachandran, A. Sánchez-Juárez, J.S. Narro Rios, Optical and electrical properties of SnSe2 and SnSe thin films prepared by spray pyrolysis. Thin Solid Films 535, 390–393 (2013). https://doi.org/10.1016/j.tsf.2012.12.081

    Article  CAS  Google Scholar 

  45. M.G. Moustafa, M.M.S. Sanad, M.Y. Hassaan, NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries. J. Alloys Compd. 845, 156338 (2020). https://doi.org/10.1016/j.jallcom.2020.156338

    Article  CAS  Google Scholar 

  46. M.M.S. Sanad, A. Toghan, Unveiling the role of trivalent cation incorporation in Li-rich Mn-based layered cathode materials for low-cost lithium-ion batteries. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04884-0

    Article  Google Scholar 

  47. M.M.S. Sanad, Extending the luminescence properties of zinc gallogermanate via co-doping with cost-effective metals ions (Cr3+/Mg2+, Cr3+/Ca2+, Cr3+/Sr2+). J. Mater. Sci. 32(8), 9929–9937 (2021). https://doi.org/10.1007/s10854-021-05650-x

    Article  CAS  Google Scholar 

  48. H. Soonmin, Analysis of thin films by infrared spectroscopy: review. Indian J. Nat. Sci. (2020). https://doi.org/10.9734/bpi/cacb/v1/7235D

    Article  Google Scholar 

  49. G. Gnanamoorthy, V.K. Yadav, D. Latha, V. Karthikeyan, V. Narayanan, Enhanced photocatalytic performance of ZnSnO3/rGO nanocomposite. Chem. Phys. Lett. 739, 137050 (2020). https://doi.org/10.1016/j.cplett.2019.137050

    Article  CAS  Google Scholar 

  50. P. Junlabhut, W. Mekprasart, R. Noonuruk, K. Chongsri, W. Pecharapa, Characterization of ZnO: Sn nanopowders synthesized by Co-precipitation method. Energy Procedia 56, 560–565 (2014). https://doi.org/10.1016/j.egypro.2014.07.193

    Article  CAS  Google Scholar 

  51. R. Jain, V. Luthra, M. Arora, S. Gokhale, Infrared spectroscopic study of magnetic behavior of dysprosium doped magnetite nanoparticles. J. Supercond. Nov. Magn. 32(2), 325–333 (2018). https://doi.org/10.1007/s10948-018-4717-5

    Article  CAS  Google Scholar 

  52. Y. Liu, Z.-H. Yang, P.-P. Song, R. Xu, H. Wang, Facile synthesis of Bi2 MoO6 /ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Appl. Surf. Sci. 430, 561–570 (2018). https://doi.org/10.1016/j.apsusc.2017.06.231

    Article  CAS  Google Scholar 

  53. K.C. Nwambaekwe, M. Masikini, P. Mathumba, M.E. Ramoroka, S. Duoman, V.S. John-Denk, E.I. Iwuoha, Electronics of anion hot injection-synthesized Te-functionalized kesterite nanomaterial. J. Nanomater. 11(3), 794 (2021). https://doi.org/10.3390/nano11030794

    Article  CAS  Google Scholar 

  54. M.M.S. Sanad, M.M. Farahat, M.A. Abdel Khalek, One-step processing of low-cost and superb natural magnetic adsorbent: kinetics and thermodynamics investigation for dye removal from textile wastewater. Adv. Powder Technol. 32(5), 1573–1583 (2021). https://doi.org/10.1016/j.apt.2021.03.013

    Article  CAS  Google Scholar 

  55. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 4(1), 97 (2019). https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

  56. M.M. Farahat, M.M.S. Sanad, M.A. Abdel-khalek, Decoration of serpentine with iron ore as an efficient low-cost magnetic adsorbent for Cr (VI) removal from tannery wastewater. Powder Technol. 388, 51–62 (2021). https://doi.org/10.1016/j.powtec.2021.04.061

    Article  CAS  Google Scholar 

  57. F. Baum, M.F. Da Silva, G. Linden, D. Feijo, E.S. Rieder, M.J.L. Santos, Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties. J. Nanoparticle Res. (2019). https://doi.org/10.1007/s11051-019-4485-6

    Article  Google Scholar 

  58. P. Ramasamy, P. Manivasakan, J. Kim, Phase controlled synthesis of SnSe and SnSe2 hierarchical nanostructures made of single crystalline ultrathin nanosheets. Cryst. Eng. Commun. 17(4), 807–813 (2015). https://doi.org/10.1039/c4ce01868k

    Article  CAS  Google Scholar 

  59. L. Yang, J. Zhu, D. Xiao, Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Adv. 2(21), 8179 (2012). https://doi.org/10.1039/c2ra21401f

    Article  CAS  Google Scholar 

  60. S.L. Zhang, C.F. Lin, Y.L. Weng, L.C. He, T.L. Guo, Y.A. Zhang, X.T. Zhou, Facile and green synthesis of core–shell ZnSe/ZnS quantum dots in aqueous solution. J. Mater. Sci. 29(19), 16805–16814 (2018). https://doi.org/10.1007/s10854-018-9775-8

    Article  CAS  Google Scholar 

  61. J. Chang, E.R. Waclawik, Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures: insight into the universal phase-selectivity mechanism. Cryst. Eng. Commun. 15(28), 5612 (2013). https://doi.org/10.1039/c3ce40284c

    Article  CAS  Google Scholar 

  62. M.M.S. Sanad, A.A. Azab, T.A. Taha, Introduced oxygen vacancies in cadmium ferrite anode materials via Zn2+ incorporation for high performance lithium-ion batteries. Mater. Sci. Semicond. Process. 143, 106567 (2022). https://doi.org/10.1016/j.mssp.2022.106567

    Article  CAS  Google Scholar 

  63. M.G. Moustafa, M.M.S. Sanad, Green fabrication of ZnAl2O4-coated LiFePO4 nanoparticles for enhanced electrochemical performance in Li-ion batteries. J. Alloys Compd. 903, 163910 (2022). https://doi.org/10.1016/j.jallcom.2022.163910

    Article  CAS  Google Scholar 

  64. J. Ma, C. Lu, C. Liu, M. Qi, X. Xu, D. Yang, X. Xu, Electrophoretic deposition of ZnSnO3/MoS2 heterojunction photoanode with improved photoelectric response by low recombination rate. J. Alloys Compd. 810, 151845 (2019). https://doi.org/10.1016/j.jallcom.2019.151845

    Article  CAS  Google Scholar 

  65. L. Grządziel, M. Krzywiecki, A. Szwajca, A. Sarfraz, G. Genchev, A. Erbe, Detection of intra-band gap defects states in spin-coated sol-gel SnOx nanolayers by photoelectron spectroscopies. J. Phys. D 51(31), 315301 (2018). https://doi.org/10.1088/1361-6463/aacf3a

    Article  CAS  Google Scholar 

  66. S. Dong, L. Xia, F. Zhang, F. Li, Y. Wang, L. Cui, J. Feng, J. Sun, Effects of pH value and hydrothermal treatment on the microstructure and natural-sunlight photocatalytic performance of ZnSn(OH)6 photocatalyst. J. Alloys Compd. 810, 151955 (2019). https://doi.org/10.1016/j.jallcom.2019.151955

    Article  CAS  Google Scholar 

  67. S. Cai, Y. Li, X. Chen, Y. Ma, X. Liu, Y. He, Optical and electrical properties of Ta-doped ZnSnO3 transparent conducting films by sol–gel. J. Mater. Sci. 27(6), 6166–6174 (2016). https://doi.org/10.1007/s10854-016-4544-z

    Article  CAS  Google Scholar 

  68. G.K. ViS, M. Green, XPS analysis of ZnS0.4Se0.6 thin films deposited by spray pyrolysis technique. J. Electron Spectrosc. Relat. Phenom. 249, 147072 (2021). https://doi.org/10.1016/j.elspec.2021.147072

    Article  CAS  Google Scholar 

  69. W. Chen, X. Li, F. Wang, S. Javaid, Y. Pang, J. Chen, Z. Yin, S. Wang, Y. Li, G. Jia, Nonepitaxial gold-tipped ZnSe hybrid nanorods for efficient photocatalytic hydrogen production. Small 16(12), 1902231 (2019). https://doi.org/10.1002/smll.201902231

    Article  CAS  Google Scholar 

  70. M.M.S. Sanad, A.A. Azab, T.A. Taha, Inducing lattice defects in calcium ferrite anode materials for improved electrochemical performance in lithium-ion batteries. Ceram. Int. 48(9), 12537–12548 (2022). https://doi.org/10.1016/j.ceramint.2022.01.121

    Article  CAS  Google Scholar 

  71. Y. Hanifehpour, S.W. Joo, N. Hamnabard, J.H. Jung, The electrochemical performance and catalytic properties of Ytterbium substitution on Manganese oxide nanoparticles: BET study; preparation and characterization. J. Mater. Sci. 30(20), 18897–18909 (2019). https://doi.org/10.1007/s10854-019-02246-4

    Article  CAS  Google Scholar 

  72. Q. Xue, Q. Zhang, Agar hydrogel template synthesis of Mn3O4 nanoparticles through an ion diffusion method controlled by ion exchange membrane and electrochemical performance. J. Nanomater. 9(4), 503 (2019). https://doi.org/10.3390/nano9040503

    Article  CAS  Google Scholar 

  73. M. Aronniemi, J. Sainio, J. Lahtinen, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surf. Sci. 578(1–3), 108–123 (2005). https://doi.org/10.1016/j.susc.2005.01.019

    Article  CAS  Google Scholar 

  74. Y. Chen, D. An, S. Sun, J. Gao, L. Qian, Reduction and removal of chromium VI in water by powdered activated carbon. Materials (2018). https://doi.org/10.3390/ma11020269

    Article  Google Scholar 

  75. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, New insights on the Burstein-Moss shift and band gap narrowing in indium-doped zinc oxide thin films. PLoS ONE 10(10), 141180 (2015). https://doi.org/10.1371/journal.pone.0141180

    Article  CAS  Google Scholar 

  76. S. Manjunatha, R. Hari Krishna, T. Thomas, B.S. Panigrahi, M.S. Dharmaprakash, Moss-Burstein effect in stable, cubic ZrO2: Eu+3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Mater. Res. Bull. 98, 139–147 (2018). https://doi.org/10.1016/j.materresbull.2017.10.006

    Article  CAS  Google Scholar 

  77. N. Mukurala, K. Mokurala, L. Mohapatra, S. Suman, A.K. Kushwaha, Enhancement in photocurrent conversion efficiency via recrystallization of zinc tin hydroxide nanostructures. J. Alloys Compd. 928, 167127 (2022)

    Article  Google Scholar 

  78. M.M.S. Sanad, Novel CuIn1-xGaxTe2 structures for high efficiency photo-electrochemical solar cells. Int. J. Electrochem. Sci. 48, 4337–4351 (2016). https://doi.org/10.20964/2016.06.48

    Article  CAS  Google Scholar 

  79. Z.M. Gibbs, A. LaLonde, G.J. Snyder, Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J. Phys. 15(7), 075020 (2013). https://doi.org/10.1088/1367-2630/15/7/075020

    Article  CAS  Google Scholar 

  80. M. Liu, Q. Zhan, W. Li, R. Li, Q. He, Y. Wang, Effect of Zn doping concentration on optical band gap of PbS thin films. J. Alloys Compd. 792, 1000–1007 (2019). https://doi.org/10.1016/j.jallcom.2019.04.117

    Article  CAS  Google Scholar 

  81. Z. Sun, Z. Liu, J. Li, G. Tai, S.-P. Lau, F. Yan, Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24(43), 5878–5883 (2012). https://doi.org/10.1002/adma.201202220

    Article  CAS  Google Scholar 

  82. Ö. Bayraklı Sürücü, H.H. Güllü, Deposition and characterization of ZnSnSe2 thin-films deposited by using sintered stoichiometric powder. J. Polytech. 40, 1154 (2018). https://doi.org/10.2339/politeknik.468893

    Article  Google Scholar 

  83. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90(12), 1773–1787 (2006). https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  84. T.B. Ivetić, N.L. Finčur, L.R. Đačanin, B.F. Abramović, S.R. Lukić-Petrović, Ternary and coupled binary zinc tin oxide nanopowders: synthesis, characterization, and potential application in photocatalytic processes. Mater. Res. Bull. 62, 114–121 (2015). https://doi.org/10.1016/j.materresbull.2014.11.001

    Article  CAS  Google Scholar 

  85. O.A. Fouad, G. Glaspell, M.S. El-Shall, Structural, optical and gas sensing properties of Zno, Sno2 and Z to nanostructures. NANO 05(04), 185–194 (2010). https://doi.org/10.1142/s1793292010002098

    Article  CAS  Google Scholar 

  86. S. An, C. Jin, H. Kim, S. Lee, B. Jeong, C. Lee, Synthesis, structure, and luminescence properties of ZnSnO3 nanowires. NANO 07(02), 1250013 (2012). https://doi.org/10.1142/s1793292012500130

    Article  Google Scholar 

  87. F.K. Butt, C. Cao, W.S. Khan, Z. Ali, R. Ahmed, F. Idrees, I. Aslam, M. Tanveer, J. Li, S. Zaman, T. Mahmood, Synthesis of highly pure single crystalline SnSe nanostructures by thermal evaporation and condensation route. Mater. Chem. Phys. 137(2), 565–570 (2012). https://doi.org/10.1016/j.matchemphys.2012.09.059

    Article  CAS  Google Scholar 

  88. M. Molaei, A.R. Bahador, M. Karimipour, Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach. J. Lumin. 166, 101–105 (2015). https://doi.org/10.1016/j.jlumin.2015.05.019

    Article  CAS  Google Scholar 

  89. H. Ullah, U. Malik, Zinc tin oxide nanocomposites with nanodiamonds—preparation, characterization and optical properties investigations. Mater. Today Commun. 20, 100559 (2019). https://doi.org/10.1016/j.mtcomm.2019.100559

    Article  CAS  Google Scholar 

  90. H. Ullah, M. Sohail, U. Malik, N. Ali, M.A. Bangash, M. Nawaz, Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique. Mater. Res. Express 3(7), 075016 (2016). https://doi.org/10.1088/2053-1591/3/7/075016

    Article  CAS  Google Scholar 

  91. M. Moldovan, L.S. Hirsch, A.J. Ptak, C.D. Stinespring, T.H. Myers, N.C. Giles, Nitrogen doping of ZnSe and CdTe epilayers: a comparison of two rf sources. J. Electron. Mater. 27(6), 756–762 (1998). https://doi.org/10.1007/s11664-998-0049-8

    Article  CAS  Google Scholar 

  92. Y. Alghamdi, Composition and band gap controlled AACVD of ZnSe and ZnSxSe1-x thin films using novel single source precursors. Mater. Sci. Appl. 8(10), 726–737 (2017). https://doi.org/10.4236/msa.2017.810052

    Article  CAS  Google Scholar 

  93. B. Feng, J. Cao, D. Han, H. Liang, S. Yang, X. Li, J. Yang, ZnSe nanoparticles of different sizes: optical and photocatalytic properties. Mater. Sci. Semicond. Process 27, 865–872 (2014). https://doi.org/10.1016/j.mssp.2014.08.027

    Article  CAS  Google Scholar 

  94. U. Philipose, S. Yang, T. Xu, H.E. Ruda, Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 90(6), 063103 (2007). https://doi.org/10.1063/1.2457190

    Article  CAS  Google Scholar 

  95. S.M. Ali, M.S. AlGarawi, S.S. AlGamdi, M.A. Khan, T. Uzzaman, K. Saeed, J. Ahmed, Effects of Cu doping on the structural, photoluminescence and impedance spectroscopy of CoS2 thin films. J. Mater. Sci. 32, 3948–3957 (2021). https://doi.org/10.1007/s10854-020-05136-2

    Article  CAS  Google Scholar 

  96. H. Liu, Z. Li, L. Zhang, H. Ruan, R. Hu, MOF-derived ZnSe/N-doped carbon composites for lithium-ion batteries with enhanced capacity and cycling life. Nanosc. Res. Lett. 14, 237 (2019). https://doi.org/10.1186/s11671-019-3055-2

    Article  CAS  Google Scholar 

  97. A. Zatirostami, Electro-deposited SnSe on ITO: a low-cost and high-performance counter electrode for DSSCs. J. Alloys Compd. 844, 156151 (2020). https://doi.org/10.1016/j.jallcom.2020.156151

    Article  CAS  Google Scholar 

  98. K.C. Nwambaekwe, M. Masikini, P. Mathumba, M.E. Ramoroka, S. Duoman, V.S. John-Denk, E.I. Iwuoha, Electronics of anion hot injection-synthesized Te-functionalized kesterite nanomaterial. Nanomaterials 11, 794 (2021). https://doi.org/10.3390/nano11030794

    Article  CAS  Google Scholar 

  99. M. Schalenbach, Y.E. Durmus, S.A. Robinson, H. Tempel, H. Kungl, R.A. Eichel, Physicochemical mechanisms of the double-layer capacitance dispersion and dynamics: an impedance analysis. J. Phys. Chem. C 125, 5870–5879 (2021). https://doi.org/10.1021/acs.jpcc.0c11335

    Article  CAS  Google Scholar 

  100. Ş Altındal, A.F. Özdemir, Ş Aydoğan, A. Türüt, Discrepancies in barrier heights obtained from current–voltage (IV) and capacitance–voltage (CV) of Au/PNoMPhPPy/n-GaAs structures in wide range of temperature. J. Mater. Sci. 33, 12210–12223 (2022). https://doi.org/10.1007/s10854-022-08181-1

    Article  CAS  Google Scholar 

  101. S. Altındal Yerişkin, Y. Şafak Asar, Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. J. Mater. Sci. 32, 22860–22867 (2021). https://doi.org/10.1007/s10854-021-06763-z

    Article  CAS  Google Scholar 

  102. K.-W. Cheng, Wu. Yu-Hsiang, T.-H. Chiu, Photoelectrochemical salt water splitting using ternary silvere tin selenide photoelectrodes. J. Power Sources 307, 329–339 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.090

    Article  CAS  Google Scholar 

  103. P. Mandal, U.K. Ghorui, A. Mondal, D. Banerjee, Photoelectrochemical performance of tin selenide (SnSe) thin films prepared by two different techniques. Electron. Mater. Lett. 18, 381–390 (2022). https://doi.org/10.1007/s13391-022-00349-5

    Article  CAS  Google Scholar 

  104. E. Sitara, H. Nasir, A. Mumtaz, M.F. Ehsan, M. Sohail, S. Iram, S.A.B. Bukhari, S. Ullah, T. Akhtar, A. Iqbal, Enhanced photoelectrochemical water splitting using zinc selenide/graphitic carbon nitride type-II heterojunction interface. Int. J. Hydrogen Energy 46, 25424–25435 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.054

    Article  CAS  Google Scholar 

  105. Y. Liu, G. Wang, Y. Li, Z. Jin, 2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 554, 113–124 (2019). https://doi.org/10.1016/j.jcis.2019.06.080

    Article  CAS  Google Scholar 

  106. Y. Liu, Y. Zhou, Q. Tang, Q. Li, S. Chen, Z. Sun, H. Wang, A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Adv. 10, 1757–1768 (2020). https://doi.org/10.1039/C9RA09270F

    Article  CAS  Google Scholar 

  107. L. Yang, M. Zhang, M. Liu, Y. Fan, H. Ben, L. Li, X. Fu, S. Chen, Ultrasonication-assisted synthesis of ZnxCd1-xS for enhanced visible-light photocatalytic activity. Catalysts 10(3), 276 (2020). https://doi.org/10.3390/catal10030276

    Article  CAS  Google Scholar 

  108. G. Jeong, J. Kim, O. Gunawan, S.R. Pae, S.H. Kim, J.Y. Song, Y.S. Lee, B. Shin, Preparation of single-phase SnSe thin-films and modification of electrical properties via stoichiometry control for photovoltaic application. J. Alloys Compd. 722, 474–481 (2017). https://doi.org/10.1016/j.jallcom.2017.06.094

    Article  CAS  Google Scholar 

  109. R. Wang, S.P. Jiang, Y. Lyu, S. Du, J. Zheng, S. Zhao, S. Wang, Defect repair of tin selenide photocathode via in situ selenization: enhanced photoelectrochemical performance and environmental stability. J. Mater. Chem. A 8, 5342–5349 (2020). https://doi.org/10.1039/C9TA13288K

    Article  CAS  Google Scholar 

  110. X. Sun, Y. He, J. Feng, Growth and characterization of ZnIn2Se4 buffer layer on CuInSe2 thin films. J. Cryst. Growth 312, 48–51 (2009). https://doi.org/10.1016/j.jcrysgro.2009.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for funding this research work through Grant No. 221412013.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Moustafa M. S. Sanad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1595 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eraky, M.S., Sanad, M.M.S. & Toghan, A. Impact of multiple cations doping on Zn–Sn–Se nanostructures for optoelectronic applications. J Mater Sci: Mater Electron 34, 265 (2023). https://doi.org/10.1007/s10854-022-09716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09716-2

Navigation