Skip to main content
Log in

Facile and green synthesis of core–shell ZnSe/ZnS quantum dots in aqueous solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, core–shell ZnSe/ZnS quantum dots (QDs) with excellent blue light emission were successfully synthesized in aqueous solution using thioglycolic acid as a stabilizer, thiourea as a sulphur source, and zinc acetate dihydrate as a Zn source. The crystal structure and optical properties of the as-synthesized ZnSe/ZnS QDs were characterized using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence (PL) and UV–Visible spectroscopy. The ZnSe/ZnS QDs had a cubic zinc blende crystalline structure with an average particle size of approximately 4.6 nm. The excitonic emission slightly shifted to a longer wavelength and the PL intensity increased considerably with the growth of the ZnS shells. Meanwhile, the PL quantum yield of the ZnSe/ZnS QDs increased to 58.5%, which was much higher than that of ZnSe QDs. The exciton radiative lifetimes were approximately 46.3 and 23.1 ns for the core–shell ZnSe/ZnS QDs and ZnSe QDs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Molaei, S. Pourjafari, Bull. Mater. Sci. 37, 9–13 (2014)

    Article  CAS  Google Scholar 

  2. X. Yuan, R.X. Ma, M.L. Shan, J.L. Zhao, H.B. Li, J. Lumin. 36, 1258–1265 (2015)

    Google Scholar 

  3. G. Feng, C. Yang, S. Zhou, Nano Lett. 13, 272–275 (2013)

    Article  CAS  Google Scholar 

  4. F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, ACS Appl. Mater. Interfaces 8, 34482–34489 (2016)

    Article  CAS  Google Scholar 

  5. M.Y. Chiu, C.C. Chen, J.T. Sheu, K.H. Wei, Org. Electron. 10, 769–774 (2009)

    Article  CAS  Google Scholar 

  6. Q. Zhang, H. Li, Y. Ma, T. Zhai, Prog. Mater Sci. 83, 472–535 (2016)

    Article  CAS  Google Scholar 

  7. D. Yu, X. Zhang, Y. Qi, S. Ding, S. Cao, A. Zhu, G. Shi, Sens. Actuators B 235, 394–400 (2016)

    Article  CAS  Google Scholar 

  8. B.R. Hyun, J.J. Choi, K.L. Seyler, T. Hanrath, F.W. Wise, ACS Nano 7, 10938–10947 (2013)

    Article  CAS  Google Scholar 

  9. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Science 290, 314–317 (2000)

    Article  CAS  Google Scholar 

  10. S.Z. Rahchamani, H. Rezagholipour Dizaji, M.H. Ehsani, Appl. Surf. Sci. 356, 1096–1104 (2015)

    Article  CAS  Google Scholar 

  11. Z. Fang, Y. Li, H. Zhang, X. Zhong, L. Zhu, J. Phys. Chem. C 113, 14145–14150 (2009)

    Article  CAS  Google Scholar 

  12. K.T. Yong, I. Roy, H.E. Pudavar, E.J. Bergey, K.M. Tramposch, M.T. Swihart, P.N. Prasad, Adv. Mater. 20, 1412–1417 (2008)

    Article  CAS  Google Scholar 

  13. M.A. Malik, N. Revaprasadu, P. O’Brien, Chem. Mater. 13, 913–920 (2001)

    Article  CAS  Google Scholar 

  14. P. Reiss, New J. Chem. 31, 1843–1852 (2007)

    Article  CAS  Google Scholar 

  15. M. Molaei, A.R. Khezripour, M. Karimipour, Appl. Surf. Sci. 317, 236–240 (2014)

    Article  CAS  Google Scholar 

  16. E. Soheyli, R. Sahraei, G. Nabiyouni, Opt. Mater. 60, 564–570 (2016)

    Article  CAS  Google Scholar 

  17. Y. Wang, C. Wang, S. Xu, Z. Wang, Y. Cui, Nanotechnology 25, 295602–295609 (2014)

    Article  Google Scholar 

  18. S.Z. Rahchamani, H.R. Dizaji, M.H. Ehsani, Appl. Surf. Sci. 356, 1096–1104 (2015)

    Article  CAS  Google Scholar 

  19. Z.H. Lin, M.Q. Wang, Z.L. Wei, X.H. Song, Y.H. Xue, X. Yao, J. Alloy. Compd. 509, 8356–8359 (2011)

    Article  CAS  Google Scholar 

  20. L. Ren, K.Y. Li, J.Y. Cui, T.D. Shen, J. Mater. Sci. 29, 4478–4487 (2018)

    CAS  Google Scholar 

  21. M. Molaei, A.R. Khezripour, M. Karimipour, J. Lumin. 166, 101–105 (2015)

    Article  CAS  Google Scholar 

  22. B.H. Dong, L.X. Cao, G. Su, W. Liu, Communication 46, 7331–7333 (2010)

    CAS  Google Scholar 

  23. Y.S. Lee, K. Nakano, H.B. Bu, D.G. Kim, Appl. Phys. Express 10, 065001–065001 (2017)

    Article  Google Scholar 

  24. L.C. He, Y.A. Zhang, S.L. Zhang, X.T. Zhou, Z.X. Lin, T.L. Guo, Mater. Technol. 33, 205–213 (2018)

    Article  CAS  Google Scholar 

  25. Z. Fang, Y. Li, H. Zhang, X.H. Zhong, L.Y. Zhu, J. Phys. Chem. C 32, 14145–14150 (2009)

    Article  Google Scholar 

  26. Z. Gu, L. Zou, Z. Fang, W. Zhu, X. Zhong, Nanotechnology 19, 135604–135610 (2008)

    Article  Google Scholar 

  27. J. Ke, X. Li, Y. Shi, Q. Zhao, X. Jiang, Nanoscale 4, 4996–5001 (2012)

    Article  CAS  Google Scholar 

  28. Y.S. Liu, Y.H. Sun, P.T. Vernier, C.H. Liang, S.Y.C. Chong, M.A. Gundersen, J. Phys. Chem. C 111, 2872–2878 (2007)

    Article  CAS  Google Scholar 

  29. K. Ou, S. Wang, G. Wan, M. Huang, Y. Zhang, L. Bai, L. Yi, J. Alloy. Compd. 726, 707–711 (2017)

    Article  CAS  Google Scholar 

  30. M.H. Christopher, S. Natasha, W. Paul, L.M. Martha, J. Nanopart. Res. 10, 89–96 (2008)

    Article  Google Scholar 

  31. K. Michael, M. David, T.C. Malcolm, K.M. Fraser, U. Nobbmann, J. Nanopart. Res. 10, 823–829 (2008)

    Article  Google Scholar 

  32. F. Dehghan, M. Molaei, F. Amirian, M. Karimipour, A.R. Bahador, Mater. Chem. Phys. 206, 76–84 (2018)

    Article  CAS  Google Scholar 

  33. A.E. Vikraman, A.R. Jose, M. Jacob, K.G. Kumar, Anal. Methods 7, 6791–6798 (2015)

    Article  Google Scholar 

  34. K. Saikia, P. Deb, E. Kalita, Curr. Appl. Phys. 13, 925–990 (2013)

    Article  Google Scholar 

  35. M.J. Murcia, D.L. Shaw, H. Woodruff, C.A. Naumann, B.A.Y. And, E.C. Long, Chem. Mater. 18, 2219–2225 (2006)

    Article  CAS  Google Scholar 

  36. X. Peng, M.C. Schlamp, A.V. K, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019–7029 (1997)

    Article  CAS  Google Scholar 

  37. C. Shu, B. Huang, X. Chen, Y. Wang, X. Li, L. Ding, W. Zhong, Spectrochim. Acta A 104, 143–149 (2013)

    Article  CAS  Google Scholar 

  38. P. Yang, N. Murase, Adv. Funct. Mater. 20, 1258–1265 (2010)

    Article  CAS  Google Scholar 

  39. J.K. Cooper, S. Gul, S.A. Lindley, J. Yano, J.Z. Zhang, ACS Appl. Mater. Interfaces 7, 10055–10066 (2015)

    Article  CAS  Google Scholar 

  40. Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao, H. Zhang, J. Phys. Chem. C 112, 8587–8593 (2008)

    Article  CAS  Google Scholar 

  41. X.Y. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y.H. Wang, P. Wang, T.Q. Zhang, Y. Zhao, H.Z. Zhang, T. Cui, Y.D. Wang, J. Zhao, W.W. Yu, A.L. Rogach, ACS Nano 7, 11234–11241 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 61474024, 61775038), the National Key R&D Program of China (Grant No. 2016YFB0401600) and the science and technology projects in Guangdong province (Grant No. 2016B090906001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. A. Zhang or X. T. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S.L., Lin, C.F., Weng, Y.L. et al. Facile and green synthesis of core–shell ZnSe/ZnS quantum dots in aqueous solution. J Mater Sci: Mater Electron 29, 16805–16814 (2018). https://doi.org/10.1007/s10854-018-9775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9775-8

Navigation