Skip to main content
Log in

Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The growth dynamics of zinc selenide quantum dots (ZnSe QDs) using oleic acid as stabilizer was addressed in this work. The QDs were synthesized by hot-injection method, using 2:1 and 10:1 oleic acid/zinc acetate ratio at 170, 190, and 210 °C. The syntheses were carried out for 30 min, 1, 2, and 3 h and the samples were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and UV-Vis spectroscopy. The QDs diameter was evaluated by Effective Mass Approximation theory from the optical band gap. Lower oleic acid/zinc acetate molar ratio resulted in smaller particles and narrower size distribution. These results, evaluated under the light of Classical Nucleation and Growth Theory, were attributed to a smaller solubility of the monomers in the oleic acid solution. This effect leads to an increased supersaturation, promoting faster nucleation and, eventually, diffusion controlled growth, resulting in particles with narrower size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe S, Capek RK, Geyter BD, Hens Z (2013) Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano 7:943–949

    Article  CAS  Google Scholar 

  • Alivisatos P (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  • Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536

    Article  CAS  Google Scholar 

  • Bawendi MG, Murray CB, Norris DJ (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos P (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  Google Scholar 

  • Chen Z, Wu D (2012) Colloidal ZnSe quantum dot as pH probes for study of enzyme reaction kinetics by fluorescence spectroscopic technique. Colloids Surf A Physicochem Eng Asp 414:174–179

    Article  CAS  Google Scholar 

  • Chen Z, Chen J, Liang Q, Wu D, Zeng Y, Jiang B (2014) ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin. J Lumin 145:569–574

    Article  CAS  Google Scholar 

  • Das A, Snee PT (2016) Synthetic developments of nontoxic quantum dots. ChemPhysChem 17:598–617

    Article  CAS  Google Scholar 

  • De Nolf K, Capek RK, Abe S, Sluydts M, Jang Y, Martins JC, Cottenier S, Lifshitz E, Hens Z (2015) Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J Am Chem Soc 137(7):2495–2505

    Article  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  • Feng B, Yang J, Cao J, Yang L, Gao M, Wei M, Liu Y, Song H (2013) Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases. Mater Res Bull 48:1040–1044

    Article  CAS  Google Scholar 

  • Feng B, Cao J, Yang J, Yang S, Han D (2014) Characterization and photocatalytic activity of ZnSe nanoparticles synthesized by a facile solvothermal method, and the effects of different solvents on these properties. Mater Res Bull 60:794–801

    Article  CAS  Google Scholar 

  • Fernandes JA, Khan S, Baum F, Kohlrausch EC, Santos JAL, Baptista DL, Teixeira SR, Dupont J, Santos MJL (2016) Synergizing nanocomposites of CdSe/TiO2 nanotubes for improved photoelectrochemical activity via thermal treatment. Dalton Trans 45:9925–9931

    Article  CAS  Google Scholar 

  • García-Rodríguez R, Hendricks MP, Cossairt BM, Liu H, Owen JS (2013) Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater 25:1233–1249

    Article  Google Scholar 

  • Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256(5062):1425–1427

    Article  CAS  Google Scholar 

  • Grim JQ, Manna L, Moreels I (2015) A sustainable future for photonic colloidal nanocrystals. Chem Soc Rev 44(16):5897–5914

    Article  CAS  Google Scholar 

  • Ijima Y, Sakaue H, Aikawa A (2010) Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K. Sensors Actuators B Chem 150:569–573

    Article  Google Scholar 

  • Ippen C, Greco T, Kim Y, Kim J, Oh MS, Han CJ, Wedel A (2014) ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability. Org Electron 15(1):126–131

    Article  CAS  Google Scholar 

  • Khan S, Santos MJL, Malfatti CF, Dupont J, Teixeira SR (2016a) Insight to the trap driven high applied potential for pristine Ta3N5 nanotubes: application in photoelectrochemical water splitting. Chem Eur J 22:18501–18511

    Article  CAS  Google Scholar 

  • Khan S, Teixeira SR, Santos MJL (2016b) Controlled thermal nitridation resulting in improved structural and photoelectrochemical properties from Ta3N5 nanotubular photoanodes. RSC Adv 5:103284–103291

    Article  Google Scholar 

  • Kim T, Jung YK, Lee J-K (2014a) The formation mechanism of CdSe QDs through the thermolysis of Cd(oleate)2 and TOPSe in the presence of alkylamine. J Mater Chem C 2(28):5593–5600

    Article  CAS  Google Scholar 

  • Kim WD, Lee S, Pak C, Woo JY, Lee K, Baum F, Won J, Lee DC (2014b) Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts: study of Ostwald ripening and core/shell formation. Chem Commun 50(14):1719–1721

    Article  CAS  Google Scholar 

  • Kiplagat A, Sibuyi NRS, Onani MO, Meyer M, Madiehe AM (2016) The cytotoxicity studies of water-soluble InP/ZnSe quantum dots. J Nanopart Res 18:147–159

    Article  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  CAS  Google Scholar 

  • Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7(19):2685–2702

    Article  CAS  Google Scholar 

  • Kwon HT, Park CM (2014) Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries. J Power Sources 251:319–324

    Article  CAS  Google Scholar 

  • Liu H, Owen JS, Alivisatos AP (2007) Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. J Am Chem Soc 129(2):305–312

    Article  CAS  Google Scholar 

  • Mir IA, Rawat K, Solanki PR, Bohidar HB (2017) ZnSe core and ZnSe@ZnS core-shell quantum dots as platform for folic acid sensing. J Nanopart Res 19:260–271

    Article  Google Scholar 

  • Najeeb MA, Abdullah SM, Aziz F, Ahmad Z, Shakoor RA, Mohamed AMA, Khalil U, Swelm W, Al-Ghamdi AA, Sulaiman K (2016) A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer. J Nanopart Res 18:384–392

    Article  Google Scholar 

  • Owen JS, Chan EM, Liu H, Alivisatos AP (2010) Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J Am Chem Soc 132:18206–18213

    Article  CAS  Google Scholar 

  • Rao CNR (2007) Nanomaterials chemistry: recent developments and new directions. In: Müller A, Cheetham AK (eds). Wiley-VCH Verlag GmbH Co. KGaA, Weinheim

  • Reiss P (2007) ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New J Chem 31:1843–1852

    Article  CAS  Google Scholar 

  • Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5(2):154–168

    Article  CAS  Google Scholar 

  • Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photonics 3:325–331

    Article  CAS  Google Scholar 

  • Sharma VK, Guzelturk B, Erdem T, Kelestemur Y, Demir HV (2014) Tunable white-light-emitting Mn-doped ZnSe nanocrystals. ACS Appl Mater Interfaces 6(5):3654–3660

    Article  CAS  Google Scholar 

  • Sowers KL, Swartz B, Krauss TD (2013) Chemical mechanisms of semiconductor nanocrystal synthesis. Chem Mater 25(8):1351–1362

    Article  CAS  Google Scholar 

  • Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771

    Article  CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630

    Article  CAS  Google Scholar 

  • van Embden J, Sader JE, Davidsom M, Mulvaney P (2009) Evolution of colloidal nanocrystals: theory and modeling of their nucleation and growth. J Phys Chem 113:16342–16355

    Google Scholar 

  • Vossmeyer T, Katsikas L, Gienig M, Popovic IG, Diesner K, Chemseddine A, Eychmiiller A, Weller H (1998) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673

    Article  Google Scholar 

  • Wu D, Chen Z, Huang G, Liu X (2014) ZnSe quantum dots based fluorescence sensors for Cu2+ ions. Sensors Actuators A Phys 205:72–78

    Article  CAS  Google Scholar 

  • Xu G, Zeng S, Zhang B, Swihart MT, Yong K-T, Prasad PN (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116:12234–12327

    Article  CAS  Google Scholar 

  • Yordanov GG, Yoshimura H, Dushkin CD (2008) Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids Surf A Physicochem Eng Asp 322:177–182

    Article  CAS  Google Scholar 

  • Zhang L-J, Shen X-C, Liang H, Yao J-T (2010) Multiple families of magic-sized ZnSe quantum dots via noninjection one-pot and hot-injection synthesis. J Phys Chem C 114:21921–21927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNANO/UFRGS and CMM/UFRGS for the measurements.

Funding

The authors thank CNPq and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos José Leite Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, F., da Silva, M.F., Linden, G. et al. Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties. J Nanopart Res 21, 42 (2019). https://doi.org/10.1007/s11051-019-4485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4485-6

Keywords

Navigation