Skip to main content

Advertisement

Log in

Ternary Z-scheme NiO/CdO/Co3O4 nanocomposite powder with enhanced photocatalytic activity under visible light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a ternary NiO/CdO/Co3O4 nanocomposite powder was synthesized using the sol–gel method. The prepared sample was compared with a binary NiO/CdO composite and the single oxides. Characterization results proved the formation of pure NiO, CdO and Co3O4. Field emission scanning electron microscopy, results indicated a good distribution of Co3O4 particles with proper contact between different phases. The average particle size in the ternary composite was 80 nm. The band gap energy of the ternary nanocomposite was 2.5 eV using the diffuse reflectance spectroscopy result. The photocatalytic activity of samples was studied using methylene blue (MB) dye degradation under visible light irradiation. The maximum degradation efficiency for the ternary nanocomposite sample was observed to reach 78% after 180 min. The kinetics and adsorption capacity of the samples were also evaluated. The mechanism of photodegradation was investigated using radical trapping. The holes were the main effective factor in photocatalytic degradation by the binary composite and the holes and hydroxyl radicals were the main species affected the degradation of the ternary nanocomposite. The proposed charge transfer mechanisms in MB degradation over the binary NiO/CdO and ternary NiO/CdO/Co3O4 composites were type I and the Z-scheme type mechanism, respectively. Cyclic degradation experiments proved the reusability of the photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data cannot be made publicly available; readers should contact the corresponding author for details.

References

  1. R. Chauhan, A. Kumar, R.P. Chaudhary, Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles. Appl. Surf. Sci. 270, 655–660 (2013). https://doi.org/10.1016/j.apsusc.2013.01.110

    Article  CAS  Google Scholar 

  2. M. Chen, Q. Xiong, Z. Liu, K. Qiu, X. Xiao, Synthesis and photocatalytic activity of na + co-doped CaTiO3:Eu3 + photocatalysts for methylene blue degradation. Ceram. Int. 46, 12111–12119 (2020). https://doi.org/10.1016/j.ceramint.2020.01.256

    Article  CAS  Google Scholar 

  3. M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Textile finishing dyes and their impact on aquatic environs. Heliyon. (2019). https://doi.org/10.1016/j.heliyon.2019.e02711

    Article  Google Scholar 

  4. M.M. Jasim, O.A. Azeez Dakhil, H.I. Abdullah, Synthesis of NiO/TNTs p-n junction for highly photocatalysis activity under sunlight irradiation. Solid State Sci. 107, 106342 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106342

    Article  CAS  Google Scholar 

  5. I.F. Ertis, I. Boz, Synthesis and characterization of metal-doped (Ni, Co, Ce, Sb) CdS catalysts and their use in methylene blue degradation under visible light irradiation. Mod. Res. Catal. 06, 1–14 (2017). https://doi.org/10.4236/mrc.2017.61001

    Article  CAS  Google Scholar 

  6. S. Senobari, A. Nezamzadeh-Ejhieh, A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: a response surface methodology study. J. Mol. Liq 257, 173–183 (2018). https://doi.org/10.1016/j.molliq.2018.02.096

    Article  CAS  Google Scholar 

  7. Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K. Ostrikov, Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Appl. Sci. 8, 1–12 (2018). https://doi.org/10.3390/app8030353

    Article  CAS  Google Scholar 

  8. X. Ma, X. Liu, X. Zhang, C. Piao, Z. Liu, D. Fang, J. Wang, Construction of dual Z-scheme NiO/NiFe2O4/Fe2O3 photocatalyst via incomplete solid state chemical combustion reactions for organic pollutant degradation with simultaneous hydrogen production. Int. J. Hydrogen Energy 46, 31659–31673 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.076

    Article  CAS  Google Scholar 

  9. T. Munawar, F. Mukhtar, M.S. Nadeem, M. Riaz, M. Naveed ur Rahman, K. Mahmood, M. Hasan, M.I. Arshad, F. Hussain, A. Hussain, F. Iqbal, Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Solid State Sci. 109, 106446 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106446

    Article  CAS  Google Scholar 

  10. H. Cui, B. Li, Z. Li, X. Li, S. Xu, Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Appl. Surf. Sci. 455, 831–840 (2018). https://doi.org/10.1016/j.apsusc.2018.06.054

    Article  CAS  Google Scholar 

  11. M.A. Karimi, M. Atashkadi, M. Ranjbar, A. Habibi-Yangjeh, Novel visible-light-driven photocatalyst of NiO/Cd/g-C3N4 for enhanced degradation of methylene blue. Arab. J. Chem. 13, 5810–5820 (2020). https://doi.org/10.1016/j.arabjc.2020.04.018

    Article  CAS  Google Scholar 

  12. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain, Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46, 2421–2437 (2020). https://doi.org/10.1016/j.ceramint.2019.09.236

    Article  CAS  Google Scholar 

  13. Y. Yan, H. Yang, Z. Yi, R. Li, T. Xian, Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci. 100, 106102 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106102

    Article  CAS  Google Scholar 

  14. S. Alikarami, A. Soltanizade, F. Rashchi, Synthesis of CdS–SnS photocatalyst by chemical co-precipitation for photocatalytic degradation of methylene blue and rhodamine B under irradiation by visible light. J. Phys. Chem. Solids 171, 110993 (2022)

    Article  CAS  Google Scholar 

  15. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J. Mater. Sci. Mater. Electron. 29, 5459–5471 (2018). https://doi.org/10.1007/s10854-017-8513-y

    Article  CAS  Google Scholar 

  16. R. Nallendran, G. Selvan, A.R. Balu, Photoconductive and photocatalytic properties of CdO–NiO nanocomposite synthesized by a cost effective chemical method. J. Mater. Sci. Mater. Electron. 29, 11384–11393 (2018). https://doi.org/10.1007/s10854-018-9227-5

    Article  CAS  Google Scholar 

  17. F. Fazlali, A.R. Mahjoub, R. Abazari, A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci. 48, 263–269 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.08.022

    Article  CAS  Google Scholar 

  18. M.N. Siddique, A. Ahmed, T. Ali, P. Tripathi, Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy, in AIP conference proceedings. (AIP Publishing, 2018)

    Google Scholar 

  19. P.H. Jefferson, S.A. Hatfield, T.D. Veal, P.D.C. King, C.F. McConville, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 2–5 (2008). https://doi.org/10.1063/1.2833269

    Article  CAS  Google Scholar 

  20. C. Wang, J. Zhai, H. Jiang, D. Liu, L. Zhang, CdS/Ag2S nanocomposites photocatalyst with enhanced visible light photocatalysis activity. Solid State Sci. 98, 106020 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106020

    Article  CAS  Google Scholar 

  21. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  22. U. Abdullah, M. Ali, E. Pervaiz, An inclusive review on recent advancements of Cadmium Sulfide Nanostructures and its hybrids for photocatalytic and electrocatalytic applications. Mol. Catal. 508, 111575 (2021). https://doi.org/10.1016/j.mcat.2021.111575

    Article  CAS  Google Scholar 

  23. F.A. El-Saied, M.M.E. Shakdofa, M.S. Ali, R.M.W. Faried, A. El-Asmy, M. Madkour, Novel thiosemicarbazone complexes as single coordinated precursors for noble metal modified nickel oxide nanophotocatalysts. J. Phys. Chem. Solids 157, 110218 (2021). https://doi.org/10.1016/j.jpcs.2021.110218

    Article  CAS  Google Scholar 

  24. S. Ghazal, N. Khandannasab, H.A. Hosseini, Z. Sabouri, A. Rangrazi, M. Darroudi, Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceram. Int. 47, 27165–27176 (2021). https://doi.org/10.1016/j.ceramint.2021.06.135

    Article  CAS  Google Scholar 

  25. T. Warang, N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye. Appl. Catal. B Environ. (2013). https://doi.org/10.1016/j.apcatb.2012.11.040

    Article  Google Scholar 

  26. F. Mukhtar, T. Munawar, M.S. Nadeem, M. Hasan, F. Hussain, M.A. Nawaz, F. Iqbal, Multi metal oxide NiO-Fe2O3-CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl. Phys. A 126, 588 (2020). https://doi.org/10.1007/s00339-020-03776-z

    Article  CAS  Google Scholar 

  27. K.V. Kumar, K. Porkodi, F. Rocha, Langmuir-Hinshelwood kinetics—a theoretical study. Catal. Commun 9, 82–84 (2008). https://doi.org/10.1016/j.catcom.2007.05.019

    Article  CAS  Google Scholar 

  28. C. Tien, Introduction to adsorption: basics, in Analysis and applications. (Elsevier, 2019)

    Google Scholar 

  29. S. Anitha, M. Suganya, D. Prabha, J. Srivind, S. Balamurugan, A.R. Balu, Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications. Mater. Chem. Phys 211, 88–96 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.048

    Article  CAS  Google Scholar 

  30. S. Anitha, M. Suganya, D. Prabha, J. Srivind, S. Balamurugan, A.R. Balu, Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications. Mater. Chem. Phys 211, 88–96 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.048

    Article  CAS  Google Scholar 

  31. H.T. Zhu, J. Luo, J.K. Liang, G.H. Rao, J.B. Li, J.Y. Zhang, Z.M. Du, Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles. Phys. B Condens. Matter 403, 3141–3145 (2008). https://doi.org/10.1016/j.physb.2008.03.024

    Article  CAS  Google Scholar 

  32. V.R. Raja, K. Muthupandi, L. Nithya, Facile synthesis of heterogeneous CdO-NiO nanocomposite with efficient photocatalytic activity under visible light irradiation. Environ. Chem. Ecotoxicol. 3, 76–84 (2021). https://doi.org/10.1016/j.enceco.2020.12.003

    Article  CAS  Google Scholar 

  33. T.D. Nguyen, W.Y. Hamad, M.J. MacLachlan, CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv. Funct. Mater 24, 777–783 (2014). https://doi.org/10.1002/adfm.201302521

    Article  CAS  Google Scholar 

  34. X. Wan, M. Yuan, S.L. Tie, S. Lan, Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Appl. Surf. Sci. 277, 40–46 (2013). https://doi.org/10.1016/j.apsusc.2013.03.126

    Article  CAS  Google Scholar 

  35. E.M. Fuentes, F.J. Cadete Santos Aires, S. Prakash, A. da Costa Faro, T. de Freitas Silva, J.M. Assaf, M.D.C. Rangel, The effect of metal content on nickel-based catalysts obtained from hydrotalcites for WGSR in one step. Int. J. Hydrogen Energy 39, 815–828 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.114

    Article  CAS  Google Scholar 

  36. J. Choi, D. Amaranatha Reddy, N.S. Han, S. Jeong, S. Hong, D. Praveen Kumar, J.K. Song, T.K. Kim, Modulation of charge carrier pathways in CdS nanospheres by integrating MoS2 and Ni2P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 7, 641–649 (2017). https://doi.org/10.1039/c6cy02145j

    Article  CAS  Google Scholar 

  37. T. Liu, Y. Li, G. Quan, P. Dai, X. Yu, M. Wu, Z. Sun, G. Li, Magnetic-field-assisted preparation of one-dimensional (1-D) wire-like NiO/Co3O4 composite for improved specific capacitance and cycle ability. Mater. Lett. 139, 208–211 (2015). https://doi.org/10.1016/j.matlet.2014.10.090

    Article  CAS  Google Scholar 

  38. J. Tauc, Amorphous and liquid semiconductors (Springer Science and Business Media, 2021)

    Google Scholar 

  39. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO Nanoparticles through Sol-gel method. Procedia Chem. 19, 626–631 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  CAS  Google Scholar 

  40. M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq 229, 293–299 (2017). https://doi.org/10.1016/j.molliq.2016.12.090

    Article  CAS  Google Scholar 

  41. M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157, 373–378 (2010). https://doi.org/10.1016/j.cej.2009.11.017

    Article  CAS  Google Scholar 

  42. S.K. Vasheghani Farahani, V. Muñoz-Sanjosé, J. Zúñiga-Pérez, C.F. McConville, T.D. Veal, Temperature dependence of the direct bandgap and transport properties of CdO. Appl. Phys. Lett. 102, 022102 (2013). https://doi.org/10.1063/1.4775691

    Article  CAS  Google Scholar 

  43. L. He, Z. Li, Z. Zhang, Rapid, low-temperature synthesis of single-crystalline Co 3 O 4 nanorods on silicon substrates on a large scale. Nanotechnology. 19, 155606 (2008). https://doi.org/10.1088/0957-4484/19/15/155606

    Article  CAS  Google Scholar 

  44. J. Zhang, S. Han, M. Cui, X. Xu, W. Li, H. Xu, C. Jin, M. Gu, L. Chen, K.H.L. Zhang, Fabrication and Interfacial Electronic structure of wide bandgap NiO and Ga2O3p-n heterojunction. ACS Appl. Electron. Mater. 2, 456–463 (2020). https://doi.org/10.1021/acsaelm.9b00704

    Article  CAS  Google Scholar 

  45. J. Nan Cheng, L. Zhu Zhao, G. Bao Li, M. Ming Yao, B/Co/Fe tridoped TiO2/SiO2 composite films for improved photocatalytic degradation of organic pollutants under visible light. Inorg. Chem. Commun. 119, 108089 (2020)

    Article  Google Scholar 

  46. C.C. Wang, J.W. Chang, S.Y. Lu, p-Cu2S/n-ZnxCd1-xS nanocrystals dispersed in a 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sunlight driven water splitting. Catal. Sci. Technol. 7, 1305–1314 (2017). https://doi.org/10.1039/c6cy02469f

    Article  CAS  Google Scholar 

  47. E.M. Ngigi, P.N. Nomngongo, J.C. Ngila, Novel Z-scheme Co 3 O 4 /WO 3 nanocomposite performance in adsorption and photocatalytic degradation of ethylparaben and methylene blue in water. Adv. Nat. Sci. Nanosci. Nanotechnol 10, 045018 (2019). https://doi.org/10.1088/2043-6254/ab49f6

    Article  Google Scholar 

  48. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Nanostructured CdO-NiO composite for multifunctional applications. J. Phys. Chem. Solids 112, 106–118 (2018). https://doi.org/10.1016/j.jpcs.2017.09.016

    Article  CAS  Google Scholar 

  49. B. Cheng, Z. Han, H. Guo, S. Lin, Z. Zhang, Y. Xiao, S. Lei, Trapping states in CdS:Eu nanobelts studied by excitation-dependent photoluminescence. J. Appl. Phys. 108, 14309 (2010). https://doi.org/10.1063/1.3457857

    Article  CAS  Google Scholar 

  50. M. Abdi, V. Mahdikhah, S. Sheibani, Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt. Mater. (Amst) 102, 109803 (2020). https://doi.org/10.1016/j.optmat.2020.109803

    Article  CAS  Google Scholar 

  51. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  Google Scholar 

  52. A. Shafei, M.E. Salarpour, S. Sheibani, Effect of intermediate ball milling on the synthesis of Cu-doped TiO2 nano-photocatalyst by sol–gel method. J. Sol-Gel Sci. Technol. 92, 173–185 (2019). https://doi.org/10.1007/s10971-019-05045-9

    Article  CAS  Google Scholar 

  53. B. Janani, A. Syed, L.L. Raju, A.H. Bahkali, S. Al-Rashed, A.M. Elgorban, B. Ahmed, A.M. Thomas, S.S. Khan, Designing intimate porous Al2O3 decorated 2D CdO nano-heterojunction as enhanced white light driven photocatalyst and antibacterial agent. J. Alloys Compd. 896, 162807 (2022)

    Article  CAS  Google Scholar 

  54. D. Akyüz, rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt. Mater. (Amst) 116, 111090 (2021)

    Article  Google Scholar 

  55. R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Coll. Interface Sci 452, 126–133 (2015). https://doi.org/10.1016/j.jcis.2015.04.035

    Article  CAS  Google Scholar 

  56. R.K. Santos, T.A. Martins, G.N. Silva, M.V.S. Conceição, I.C. Nogueira, E. Longo, G. Botelho, Ag3PO4/NiO composites with enhanced photocatalytic activity under visible light. ACS Omega 5, 21651–21661 (2020). https://doi.org/10.1021/acsomega.0c02456

    Article  CAS  Google Scholar 

  57. M.E. Malefane, Co3O4/Bi4O5I2/Bi5O7I C-scheme heterojunction for degradation of organic pollutants by light-emitting diode irradiation. ACS Omega 5, 26829–26844 (2020). https://doi.org/10.1021/acsomega.0c03881

    Article  CAS  Google Scholar 

  58. S. Senthil, B.J. Madhu et al., Efficient photocatalytic and EMI shielding properties of CdO/La2O3 nanocomposites. Res Sq (2021). https://doi.org/10.21203/rs.3.rs-341051/v1

    Article  Google Scholar 

  59. B. Hameeda, A. Mushtaq, M. Saeed, A. Munir, U. Jabeen, A. Waseem, Development of Cu-doped NiO nanoscale material as efficient photocatalyst for visible light dye degradation. Toxin Rev. 40, 1396–1406 (2021). https://doi.org/10.1080/15569543.2020.1725578

    Article  CAS  Google Scholar 

  60. F. Torki, H. Faghihian, Visible light degradation of Naproxen by enhanced photocatalytic activity of NiO and NiS, scavenger study and focus on catalyst support and magnetization. Photochem. Photobiol 94, 491–502 (2018). https://doi.org/10.1111/php.12906

    Article  CAS  Google Scholar 

  61. G. Zhao, J. Zou, X. Chen, T. Zhang, J. Yu, S. Zhou, C. Li, F. Jiao, Integration of Microfiltration and visible-light-driven photocatalysis on a ZnWO 4 Nanoparticle/Nickel–Aluminum-layered double hydroxide membrane for enhanced water purification. Ind. Eng. Chem. Res. 59, 6479–6487 (2020). https://doi.org/10.1021/acs.iecr.9b06831

    Article  CAS  Google Scholar 

  62. A.M. Abu-Dief, A.A. Essawy, A.K. Diab, W.S. Mohamed, Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 148, 109666 (2021). https://doi.org/10.1016/j.jpcs.2020.109666

    Article  CAS  Google Scholar 

  63. S. Anitha, A.R. Balu, S. Balamurugan, M. Suganya, Z. Delci, M. Karthika, C. Kayathiri, S. Chitra Devi, A comparative study on the photocatalytic performance of two third order NLO active nanocomposites (NiO-CdO and NiO-CuO) green synthesized using Psidium guajava leaf extract. Inorg. Chem. Commun. 134, 109073 (2021). https://doi.org/10.1016/j.inoche.2021.109073

    Article  CAS  Google Scholar 

  64. E.F.A. Zeid, I.A. Ibrahem, A.M. Ali, W.A.A. Mohamed, The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Res. Phys 12, 562–570 (2019). https://doi.org/10.1016/j.rinp.2018.12.009

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NSM: Conceptualization, Methodology, Software; Data curation, Validation, Writing-Original draft preparation. SS, MM: Visualization, Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to S. Sheibani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moalej, N.S., Sheibani, S. & Mokmeli, M. Ternary Z-scheme NiO/CdO/Co3O4 nanocomposite powder with enhanced photocatalytic activity under visible light irradiation. J Mater Sci: Mater Electron 34, 195 (2023). https://doi.org/10.1007/s10854-022-09666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09666-9

Navigation