Skip to main content
Log in

Investigating the kinetics of the thermolysis of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO) and reduced size NTO in the presence of cobalt ferrite additive

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The co-precipitation technique was used to successfully produce nanometer cobalt ferrite (CoF). Utilizing the solvent-antisolvent approach, the reduction in the size of sensitive HEM 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO) was effectively achieved. Using simultaneous thermal analysis, the effect of 5% by mass CoF on the thermolysis of NTO and nanosize NTO (r-NTO) was investigated. The kinetic parameter of NTO and r-NTO in the presence of CoF additive was assessed using three isoconversional methods: Flynn–Ozawa–Wall, Kissinger–Akahira–Sunose and Starink. It was found that lowering NTO’s size and adding CoF may both lower the material’s thermal breakdown temperature, with the former dropping it more significantly than the latter. The activation energy of both NTO and r-NTO was raised in the presence of CoF additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. R.R. Sirach, P.N. Dave, 3-Nitro-1,2,4-triazol-5-one (NTO): high explosive insensitive energetic material. Chem. Heterocycl. Comput. 57, 720–730 (2021). https://doi.org/10.1007/s10593-021-02973-9

    Article  CAS  Google Scholar 

  2. S. Hanafi, D. Trache, S. Abdous, Z. Bensalem, A. Mezroua, 5-Nitro-1,2,4-triazole-3-one: a review of recent advance. Chin. J. Energy Mater. 27, 326–347 (2019). https://doi.org/10.11943/CJEM2018371

    Article  CAS  Google Scholar 

  3. S. Hanafi, D. Trache, W. He, W.-X. Xie, A. Mezroua, Q.-L. Yan, Catalytic effect of 2D-layered energetic hybrid crystals on the thermal decomposition of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO). Thermochim. Acta 692, 178747 (2020). https://doi.org/10.1016/j.tca.2020.178747

    Article  CAS  Google Scholar 

  4. K.V. Prabhakaran, S.R. Naidu, E.M. Kurian, XRD, spectroscopic and thermal analysis studies on 3-nitro-1,2,4-triazole-5-one (NTO). Thermochim. Acta 241, 199–212 (1994). https://doi.org/10.1016/0040-6031(94)87018-7

    Article  CAS  Google Scholar 

  5. M. Zhang, C. Li, H. Gao, W. Fu, Y. Li, L. Tang, Z. Zhou, Promising hydrazinium 3-nitro-1,2,4-triazol-5-one and its analogs. J. Mater. Sci. 51, 10849–10862 (2016). https://doi.org/10.1007/s10853-016-0296-7

    Article  CAS  Google Scholar 

  6. D. Kumar, I.P.S. Kapoor, G. Singh, P.F. Siril, A.M. Tripathi, Preparation, characterization, and catalytic activity of nanosized NiO and ZnO: part 74. Propellants Explos. Pyrotech. 36, 268–272 (2011). https://doi.org/10.1002/prep.201000013

    Article  CAS  Google Scholar 

  7. G. Yang, F. Nie, J. Li, Q. Guo, Z. Qiao, Preparation and characterization of nano-NTO explosive. J. Energ. Mater. 25, 35–47 (2007). https://doi.org/10.1080/07370650601107104

    Article  CAS  Google Scholar 

  8. J.C. Li, Q.J. Jiao, Y.G. Gong, Y.Y. Wang, T. Liang, J. Sun, Explosive performance of HMX/NTO co-crystal. IOP Conf. Ser. Mater. Sci. Eng. 292, 012032 (2018). https://doi.org/10.1088/1757-899X/292/1/012032

    Article  Google Scholar 

  9. C. Guo, H. Zhang, X. Wang, X. Liu, J. Sun, Study on a novel energetic cocrystal of TNT/TNB. J. Mater. Sci. 48, 1351–1357 (2013). https://doi.org/10.1007/s10853-012-6881-5

    Article  CAS  Google Scholar 

  10. S. Elbasuney, G.S. El-Sayyad, The potentials of TiO2 nanocatalyst on HMX thermolysis. J. Mater. Sci. Mater. Electron. 31, 14930–14940 (2020). https://doi.org/10.1007/s10854-020-04054-7

    Article  CAS  Google Scholar 

  11. S. Elbasuney, A. Hamed, M. Yehia, M. Gobara, M. Mokhtar, The significant impact colloidal nanothermite particles (Fe2O3/Al) on HMX kinetic decomposition. J. Energ. Mater. (2021). https://doi.org/10.1080/07370652.2021.1905107

    Article  Google Scholar 

  12. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Coll. Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/j.cis.2019.07.003

    Article  CAS  Google Scholar 

  13. S. Chaturvedi, P.N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 17, 135–149 (2013). https://doi.org/10.1016/j.jscs.2011.05.009

    Article  CAS  Google Scholar 

  14. S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16, 307–325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015

    Article  CAS  Google Scholar 

  15. P.N. Dave, P.N. Ram, S. Chaturvedi, Nanoferrites: catalyst for thermal decomposition of ammonium per chlorate. Part. Sci. Technol. 33, 677–681 (2015). https://doi.org/10.1080/02726351.2015.1023479

    Article  CAS  Google Scholar 

  16. A. Miri, M. Sarani, A. Najafidoust, M. Mehrabani, F.A. Zadeh, R.S. Varma, Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles. Mater. Res. Bull. 149, 111706 (2022). https://doi.org/10.1016/j.materresbull.2021.111706

    Article  CAS  Google Scholar 

  17. V.R. Bhagwat, A.V. Humbe, S.D. More, K.M. Jadhav, Sol–gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater. Sci. Eng. B 248, 114388 (2019). https://doi.org/10.1016/j.mseb.2019.114388

    Article  CAS  Google Scholar 

  18. A.A.H. El-Bassuony, W.M. Gamal, H.K. Abdelsalam, Fascinating study of adding nanocomposite cobalt nano ferrite to silver nanoparticles accompanied magnetite impurity. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08516-y

    Article  Google Scholar 

  19. S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review. J. Alloys Compd. 863, 158734 (2021). https://doi.org/10.1016/j.jallcom.2021.158734

    Article  CAS  Google Scholar 

  20. Y. Lan, J. Zhai, D. Li, R. Yang, The influence of solution chemistry on the morphology of ammonium dinitramide crystals. J. Mater. Sci. 50, 4933–4939 (2015). https://doi.org/10.1007/s10853-015-9040-y

    Article  CAS  Google Scholar 

  21. T. Mukundan, G.N. Pur, J.K. Nair, S.M. Pansare, R.K. Sinha, H. Singh, Explosive nitrotriazolone formulates. Def. Sci. J. 52, 127–133 (2002)

    Article  CAS  Google Scholar 

  22. A. Saikia, R. Sivabalan, G.M. Gore, A.K. Sikder, Microwave-assisted quick synthesis of some potential high explosives. Propellants Explos. Pyrotech. 37, 540–543 (2012). https://doi.org/10.1002/prep.201100107

    Article  CAS  Google Scholar 

  23. Journal of Chemistry: Education Research and Practice | OPAST Online Publishing Group. https://opastonline.com/journal/journal-of-chemistry-education-research-and-practice/current-issue. Accessed 21 Oct 2021

  24. K.Y. Lee, B.W. Asay, J.E. Kennedy, Method for forming energetic nanopowders, U.S. Patent No. 8,557,066. (U.S. Patent and Trademark Office, Washington, DC, 2013)

  25. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011). https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  26. J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part C Polym. Lett. 4, 323–328 (1966)

    Article  CAS  Google Scholar 

  27. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)

    Article  CAS  Google Scholar 

  28. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217–221 (1956)

    Article  CAS  Google Scholar 

  29. T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.) 16, 22–31 (1971)

    Google Scholar 

  30. M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404, 163–176 (2003). https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  CAS  Google Scholar 

  31. D. Trache, A. Abdelaziz, B. Siouani, A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J. Therm. Anal. Calorim. 128, 335–348 (2017). https://doi.org/10.1007/s10973-016-5962-0

    Article  CAS  Google Scholar 

  32. S. Jesus Mercy, D. Parajuli, N. Murali, A. Ramakrishna, Y. Ramakrishna, V. Veeraiah, K. Samatha, Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted cobalt ferrite. Appl. Phys. A 126, 873 (2020). https://doi.org/10.1007/s00339-020-04048-6

    Article  CAS  Google Scholar 

  33. J.-T. Wu, J.-G. Zhang, T. Li, Z.-M. Li, T.-L. Zhang, A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv. 5, 28354–28359 (2015). https://doi.org/10.1039/C5RA01124H

    Article  CAS  Google Scholar 

  34. S. Das, M. Bououdina, C. Manoharan, The influence of cationic surfactant CTAB on optical, dielectric and magnetic properties of cobalt ferrite nanoparticles. Ceram. Int. 46, 11705–11716 (2020). https://doi.org/10.1016/j.ceramint.2020.01.202

    Article  CAS  Google Scholar 

  35. F. Mikailzade, H. Türkan, F. Önal, Ö. Karataş, S. Kazan, M. Zarbali, A. Göktaş, A. Tumbul, Structural, optical and magnetic characterization of nanorod-shaped polycrystalline Zn1xMnxO films synthesized using sol–gel technique. Appl. Phys. A 126, 768 (2020). https://doi.org/10.1007/s00339-020-03953-0

    Article  CAS  Google Scholar 

  36. A. Goktas, S. Modanlı, A. Tumbul, A. Kilic, Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 893, 162334 (2022). https://doi.org/10.1016/j.jallcom.2021.162334

    Article  CAS  Google Scholar 

  37. M.A. Ríos-Corripio, B.E. García-Pérez, M.E. Jaramillo-Flores, V.L. Gayou, M. Rojas-López, UV–visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A. J. Nanopart. Res. 15, 1624 (2013). https://doi.org/10.1007/s11051-013-1624-3

    Article  CAS  Google Scholar 

  38. H. Kato, A. Nakamura, K. Takahashi, S. Kinugasa, Size effect on UV–Vis absorption properties of colloidal C60 particles in water. Phys. Chem. Chem. Phys. 11, 4946–4948 (2009). https://doi.org/10.1039/B904593G

    Article  CAS  Google Scholar 

  39. S. Swathi, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation. Chemosphere 281, 130903 (2021). https://doi.org/10.1016/j.chemosphere.2021.130903

    Article  CAS  Google Scholar 

  40. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10, 546 (2020). https://doi.org/10.3390/nano10030546

    Article  CAS  Google Scholar 

  41. A. Tumbul, F. Aslan, A. Goktas, M.Z. Zarbali, A. Kilic, Highly stable ethanol-based Cu2ZnSnS4 (CZTS) low-cost thin film absorber: effect of solution aging. Mater. Chem. Phys. 258, 123997 (2021). https://doi.org/10.1016/j.matchemphys.2020.123997

    Article  CAS  Google Scholar 

  42. A. Goktas, F. Aslan, I.H. Mutlu, Effect of preparation technique on the selected characteristics of Zn1xCoxO nanocrystalline thin films deposited by sol–gel and magnetron sputtering. J. Alloys Compd. 615, 765–778 (2014). https://doi.org/10.1016/j.jallcom.2014.06.160

    Article  CAS  Google Scholar 

  43. F.R. Mariosi, J. Venturini, V.A. da Cas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46, 2772–2779 (2020). https://doi.org/10.1016/j.ceramint.2019.09.266

    Article  CAS  Google Scholar 

  44. R.I. Hiyoshi, Y. Kohno, J. Nakamura, Vibrational assignment of energetic material 5-nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) with labeled isomers. J. Phys. Chem. A 108, 5915–5920 (2004). https://doi.org/10.1021/jp049118i

    Article  CAS  Google Scholar 

  45. M. Nazim, A.A.P. Khan, A.M. Asiri, J.H. Kim, Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega 6, 2601–2612 (2021). https://doi.org/10.1021/acsomega.0c04747

    Article  CAS  Google Scholar 

  46. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson–Hall plot method. Results Phys. 9, 628–635 (2018). https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  47. V. Swamy, B.C. Muddle, Q. Dai, Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 89, 163118 (2006). https://doi.org/10.1063/1.2364123

    Article  CAS  Google Scholar 

  48. Y. Lin, Y.-J. Zhang, W.-M. Yang, J.-C. Dong, F.-R. Fan, Y. Zhao, H. Zhang, N. Bodappa, X.-D. Tian, Z.-L. Yang, G.D. Stucky, Z.-Q. Tian, J.-F. Li, Size and dimension dependent surface-enhanced Raman scattering properties of well-defined Ag nanocubes. Appl. Mater. Today 14, 224–232 (2019). https://doi.org/10.1016/j.apmt.2018.12.012

    Article  Google Scholar 

  49. G. Lan, J. Li, G. Zhang, J. Ruan, Z. Lu, S. Jin, D. Cao, J. Wang, Thermal decomposition mechanism study of 3-nitro-1,2,4-triazol-5-one (NTO): combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel 295, 120655 (2021). https://doi.org/10.1016/j.fuel.2021.120655

    Article  CAS  Google Scholar 

  50. E.F. Rothgery, D.E. Audette, R.C. Wedlich, D.A. Csejka, The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and ARC. Thermochim. Acta 185, 235–243 (1991). https://doi.org/10.1016/0040-6031(91)80045-K

    Article  CAS  Google Scholar 

  51. R. Dubey, P. Srivastava, I. Kapoor, G. Singh, Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, part 83. Thermochim. Acta 549, 102–109 (2012)

    Article  CAS  Google Scholar 

  52. V.P. Sinditskii, S.P. Smirnov, VYu. Egorshev, Thermal decomposition of NTO: an explanation of the high activation energy. Propellants Explos. Pyrotech. 32, 277–287 (2007). https://doi.org/10.1002/prep.200700029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author RS is thankful to DST (SR/NM/NT-1014/2016 (G)) for providing Junior Research Fellowship. The authors are grateful to the Department of Chemistry for the research facility, the Department of Physics, Sardar Patel University, India, for providing the XRD and Raman Facility, and Indukaka Ipcowala Center for Interdisciplinary Studies in Science and Technology (IICISST) for Simultaneous thermal analysis.

Funding

The present work was funded by the Department of Science and Technology (DST), Nanomission, New Delhi, India (SR/NM/NT-1014/2016 (G)).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RS. The first draft of the manuscript was written by RS and PD and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Pragnesh N. Dave.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P.N., Sirach, R. Investigating the kinetics of the thermolysis of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO) and reduced size NTO in the presence of cobalt ferrite additive. J Mater Sci: Mater Electron 34, 193 (2023). https://doi.org/10.1007/s10854-022-09643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09643-2

Navigation