Skip to main content

Advertisement

Log in

Structural, optical, and electrochemical characteristics of undoped and In3+-doped tin antimony sulfide thin films for device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, undoped and 5 wt% In3+-doped tin antimony sulfide (TAS) thin films were directly and facilely synthesized by spin coating of the undoped and In3+-doped Sn-Sb-S solution on fluorine-doped tin oxide (FTO) and borosilicate glass substrates using a low annealing process. The morphological, structural, linear/nonlinear optical, and electrochemical properties were investigated. The results indicate that In3+ doping significantly affected the morphological modifications of TAS thin films. The main peak of the monoclinic Sn6Sb10S21 structure was found in the XRD patterns. The crystallite size decreased from 64 to 56 nm after In3+ doping, which may be due to the formation of smaller NPs on larger NPs, which resulted from the presence of a solid-state diffusion. The slightly decreased transmittance and increased reflectance can be attributed to the increment of defects in structure or disorder and crystal imperfections, which is agreed with the increased dislocation density (δ) and micro-strain (ε). The change in energy band gaps is of 1.67–1.68 eV with the obtained \({E}_{U}\) decreased from 102.92 to 63.79 meV after In3+ doping. Linear optical parameters such as the optical conductivity, refractive index, real/imaginary dielectric constants, and dielectric loss were investigated. The higher χ(1), χ(3), and n2 values were, respectively, obtained for the In3+-doped TAS at the low photon energy region of 0.138, 0.694 × 10–13 esu., and 1.512 × 10–12 esu. The specific capacitance (Cs) values were 222 and 176 mAh/g at a scan rate of 10 mV/s for the undoped and In3+-doped TAS thin films, respectively. On the other hand, In3+ doping promotes the higher carrier capacity in the TAS thin film by the decrease in capacitance loss in thin film. The lattice disorder or distortion after In3+ doping affected the adsorption/desorption and diffusion processes of free carriers. The results of the present demonstration provided information for feasible device applications. The investigation of linear, nonlinear optical, and electrochemical parameters for the undoped and In3+-doped TAS thin film showed promise for high potential optoelectronic, energy storage, and pseudocapacitive devices, and should be improved further in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. N. Drissi, A. Gassoumi, H. Boughzala, J. Ouerfelli, M. Kanzari, Investigation of structural and optical properties of the sulfosalt SnSb4S7 thin films. J. Mol. Struct. 1047, 61–65 (2013)

    Article  CAS  Google Scholar 

  2. G.N. Kryukova, M. Heuer, G. Wagner, T. Doering, K. Bente, Synthetic Cu0.507(5)Pb8.73(9)Sb8.15(8)I1.6S20.0(2) nanowires. J. Solid State Chem. 178, 376–381 (2005)

    Article  CAS  Google Scholar 

  3. S.F. Sie, N. Suriyawong, J.B. Shi, X. He, L. Zhang, D.J. Singh, M.W. Lee, Pb5Sb8S17 quantum dot-sensitized solar cells with an efficiency of 6% under 0.05 sun: Theoretical and experimental studies. Prog. Photovolt. Res. Appl. 26, 205–213 (2018)

    Article  CAS  Google Scholar 

  4. D.C. Liu, B.A. Aragaw, J.B. Shi, M.W. Lee, PbBi4S7: a new infrared solar absorber material exhibiting high photocurrents. J. Electrochem. Soc. 164, F804–F808 (2017)

    Article  CAS  Google Scholar 

  5. H. Samosir, P. Boon-on, Y.E. Lin, L.P. Chen, D.J. Singh, J.B. Shi, M.W. Lee, Tunable optical properties in SnxSb2−yS3: a new solar absorber material with an efficiency of near 5%. J. Phys. Chem. C 123, 5209–5215 (2019)

    Article  CAS  Google Scholar 

  6. M.M. Wakkad, E.K. Shokr, H.A. Abd El Ghani, M.A. Awad, Optical and electrical properties of Sn-Sb-Se chalcogenide thin films. Eur. Phys. J. Appl. Phys. 43, 23–30 (2008)

    Article  CAS  Google Scholar 

  7. A.A. Attia, M.S. El-Bana, D.M. Habashy, S.S. Fouad, M.Y. El-Bakry, Optical constants characterization of As30Se70−xSnx thin films using neural networks. J. Appl. Res. 15, 423–429 (2017)

    Google Scholar 

  8. G.H. Tariq, K. Hutchings, D.W. Lane, K.D. Rogers, M. Anis-ur-Rehman, Annealing effects on the microstructural properties of complex sulfosalt (SnS)x–(Bi2S3)1–x gradient thin films. J. Phys. D: Appl. Phys. 46, 485302 (2013)

    Article  Google Scholar 

  9. J. Sribenjawan, D. Raknual, V. Vailikhit, N. Kitisripanya, A. Tubtimtae, Facile synthesis of copper-antimony-sulfide nanostructures on WO3 electrodes investigation of electrochemical performance. Mater. Lett. 245, 126–129 (2019)

    Article  CAS  Google Scholar 

  10. W. Kumrueng, K. Sawanthai, A. Tubtimtae, W. Ponhan, Effect of pH treatment on the structural and optical properties of Sn6Sb10S21 thin films facilely synthesized using a spin coating method. Opt. Mater. 105, 109917 (2020)

    Article  CAS  Google Scholar 

  11. S. Devasia, S. Shaji, D.A. Avellaneda, J.A. Martinez, B. Krishnan, Tin antimony sulfide (Sn6Sb10S21) thin films by heating chemically deposited Sb2S3/SnS layers: studies on the structure and their optoelectronic properties. J. Alloys. Compd. 827, 154256 (2020)

    Article  CAS  Google Scholar 

  12. N. Ali, S. Ajmal, M. Shah, R. Ahmed, B.U. Haq, A. Shaari, Effect of antimony variation on the physical properties of thermally deposited SnS thin films. Chalcogenide Lett. 11, 503–508 (2014)

    Google Scholar 

  13. N. Ali, R. Ahmed, B. Ul Haq, A. Shaari, R. Hussain, S. Goumri-Said, A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application. J. Sol. Energy 113, 25–33 (2015)

    Article  CAS  Google Scholar 

  14. A.I. Inamdar, S. Lee, K.Y. Jeon, C.H. Lee, S.M. Pawar, R.S. Kalubarme, C.J. Park, H. Im, W. Jung, H. Kim, Optimized fabrication of sputter deposited Cu2ZnSnS4 (CZTS) thin films. J. Sol. Energy 91, 196–203 (2013)

    Article  CAS  Google Scholar 

  15. S. Devasia, S. Shaji, D.A. Avellaneda, J.A. Martinez, B. Krishnan, Tin antimony sulfide (Sn6Sb10S21) thin films by heating chemically deposited Sb2S3/SnS layers: studies on the structure and their optoelectronic properties. J. Alloys Compd. 827, 154256 (2020)

    Article  CAS  Google Scholar 

  16. F. Tlig, M. Gannouni, I.B. Assaker, R. Chtourou, New investigation on the physical and electrochemical properties of (TAS) thin films grown by electrodeposition technique. J. Photochem. Photobiol. A Chem 335, 26–35 (2017)

    Article  CAS  Google Scholar 

  17. N. Ali, A. Hussain, S.T. Hussain, M.A. Iqbal, M. Shah, I. Rahim, N. Ahmad, Z. Ali, K. Hutching, D. Lane, W.A. Syed, Physical properties of the absorber layer Sn2Sb2S5 thin Films for photovoltaics. Curr. Nanosci. 9, 149–152 (2013)

    CAS  Google Scholar 

  18. Y. Yang, S. Liang, X. Yu, Q. Wang, Microwave synthesis of Cu-doped ternary ZnCdS quantum dots with composition-controllable photoluminescence. Wuhan Univ. J. Nat. Sci. 17, 217–222 (2012)

    Article  CAS  Google Scholar 

  19. M. Kladkaew, N. Samranlertrit, V. Vailikhit, P. Teesetsopon, A. Tubtimtae, Effect of annealing process on the properties of undoped and manganese2+-doped co-binary copper telluride and tin telluride thin films. Ceram. Inter. 44, 7186–7201 (2018)

    Article  CAS  Google Scholar 

  20. B.S. Anjali, N. Patial, Thakur, On the structural and thermophysical study of Pb-doped Se-Te-In nanochalcogenide alloys. J. Asian Ceram. Soc. 8, 777–792 (2020)

    Article  Google Scholar 

  21. C. Wang, S. Xu, Y. Shao, Z. Wang, Q. Xu, Y. Cui, Synthesis of Ag doped ZnlnSe ternary quantum dots with tunable emission. J. Mater. Chem. C 2, 5111–5115 (2014)

    Article  CAS  Google Scholar 

  22. K.L. Yan, X. Shang, Z. Li, B. Dong, X. Li, W.K. Gao, J.Q. Chi, Y.M. Chai, C.G. Liu, Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 416, 371–378 (2017)

    Article  CAS  Google Scholar 

  23. B. Singh, S. Ghosh, Highly conducting transparent indium-doped zinc oxide thin films. J. Electron. Mater. 43, 3217–3221 (2014)

    Article  CAS  Google Scholar 

  24. R.C. Pullar, S.J. Penn, X. Wang, I.M. Reaney, N.M.N. Alford, Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc. 29, 419–424 (2009)

    Article  CAS  Google Scholar 

  25. H. Albetran, I.M. Low, Effect of indium ion implantation on crystallization kinetics and phase transformation of anodized titania nanotubes using in-situ high-temperature radiation diffraction. J. Mater. Res. 31, 1588–1595 (2016)

    Article  CAS  Google Scholar 

  26. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  27. R.T. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969)

    Article  CAS  Google Scholar 

  28. E. Pervaiz, I.H. Gul, A. Habib, Hydrothermal synthesis, structural and electrical properties of antimony (Sb3+) substituted nickel ferrites. J. Supercond. Nov. Magn. 27, 881–890 (2014)

    Article  CAS  Google Scholar 

  29. M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ion. 300, 32–37 (2017)

    Article  CAS  Google Scholar 

  30. B.R. Kumar, B. Hymavathi, X-ray peak profile analysis of Sb2O3-doped ZnO nanocomposite semiconductor. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 035018 (2018)

    Article  Google Scholar 

  31. K. Lovchinov, G. Marinov, M. Petrov, N. Tyutyundzhiev, T. Babeva, Influence of ZnCl2 concentration on the structural and optical properties of electrochemically deposited nanostructured ZnO. Appl. Surf. Sci. 456, 69–74 (2018)

    Article  CAS  Google Scholar 

  32. M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, K. Pushpanathan, Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Appl. Surf. Sci. 449, 132–143 (2018)

    Article  CAS  Google Scholar 

  33. P. Suttiyarak, A. Tubtimtae, P-type In3+-doped Cu12Sb4S13 thin films deposited by spray pyrolysis method: Investigation of structural, optical, electrical, and electrocatalytic properties. Appl. Surf. Sci. 527, 146835 (2020)

    Article  CAS  Google Scholar 

  34. X. Zhang, H. Lee, J.H. Kwon, E.J. Kim, J. Park, Low-concentration indium doping in solution-processed zinc oxide films for thin-film transistors. Materials 10, 880 (2017)

    Article  Google Scholar 

  35. N. Rukcharoen, A. Tubtimtae, V. Vailikhit, P. Teesetsopon, N. Kitisripanya, Effect of low thermal treatment temperatures on the morphological, optical and electrical properties of Sn1-xMnxTe nanocomposite films incorporated with indium cations. Ceram. Int. 45, 23203–23215 (2019)

    Article  Google Scholar 

  36. B.E. Warren, X-ray diffraction (Dover, New York, 1990), pp.251–275

    Google Scholar 

  37. S. Chander, M.S. Dhaka, Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Physica E Low Dimens. Syst. Nanostruct. 80, 62–68 (2016)

    Article  CAS  Google Scholar 

  38. G.K. Williamson, R.E. Smallman III., Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. A 1, 34–45 (1956)

    Article  CAS  Google Scholar 

  39. T. Entradas, J.F. Cabrita, S. Dalui, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Synthesis of sub – 5 nm co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater. Chem. Phys. 147, 563–571 (2014)

    Article  CAS  Google Scholar 

  40. P. Sivakumar, H.S. Akkera, T.R. Reddy, G.S. Reddy, N. Kambhala, N.N. Reddy, Influence of Ga doping on structural, optical and electrical properties of transparent conducting SnO2 thin films. Optik 226, 165859 (2021)

    Article  CAS  Google Scholar 

  41. R. Casanova, J. Mendialdua, A. Loaiza-Gil, A. Rodríguez, F. Rueda, Characterization of iron phyllosilicate catalysts by means of KLL Auger spectra of oxygen. Rev. Latin Am. Met. Mat. 22, 78–81 (2002)

    Google Scholar 

  42. H.K. Jang, Y.D. Chung, S.W. Whangbo, T.G. Kim, C.N. Whang, S.J. Lee, S. Lee, Effects of chemical etching with nitric acid on glass surfaces. J. Vac. Sci. Technol. A 19, 267–274 (2001)

    Article  CAS  Google Scholar 

  43. J.F. Moulder, J. Chastain, R.C. King, Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics Division Perkin-Elmer Corp, Eden Prairie, 1995)

    Google Scholar 

  44. Z. Liu, J. Cheng, O. Höfft, F. Endres, Electrodeposition of indium from an ionic liquid investigated by in situ electrochemical XPS. Metals 12, 59 (2022)

    Article  CAS  Google Scholar 

  45. R. Félix, N. Llobera-Vila, C. Hartmann, C. Klimm, M. Hartig, R.G. Wilks, M. Bär, Preparation and in-system study of SnCl2 precursor layers: towards vacuum-based synthesis of Pb-free perovskites. RSC Adv. 8, 67–73 (2018)

    Article  Google Scholar 

  46. W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, S. Wu, High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. Cryst. Eng. Comm. 16, 6841–6847 (2014)

    Article  CAS  Google Scholar 

  47. F. Lu, X. Ji, Y. Yang, W. Deng, C.E. Banks, Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion. RSC Adv. 3, 18791–18793 (2013)

    Article  CAS  Google Scholar 

  48. I. Martini, E. Chevallay, V. Fedosseev, C. Hessler, H. Neupert, V. Nistor, M. Taborelli, Surface characterization at CERN of photocathodes for photoinjector applications. Part of proceedings, 6th international particle accelerator conference (IPAC 2015) (2015)

  49. J. Luo, X. Luo, J. Crittenden, J. Qu, Y. Bai, Y. Peng, J. Li, Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 49, 11115–11124 (2015)

    Article  CAS  Google Scholar 

  50. C. Wang, J.L. Xia, H.C. Liu, Y.H. Zhou, Z.Y. Nie, L. Chen, W.S. Shu, Enhancement mechanism of stibnite dissolution mediated by Acidithiobacillus ferrooxidans under extremely acidic condition. Int. J. Mol. Sci. 23, 3580 (2022)

    Article  CAS  Google Scholar 

  51. S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, X. Dong, Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens. Actuators B 242, 231–237 (2017)

    Article  CAS  Google Scholar 

  52. D. Ma, Y. Xin, M. Gao, J. Wu, Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B 147, 49–57 (2014)

    Article  CAS  Google Scholar 

  53. L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015)

    Article  Google Scholar 

  54. P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 12, 593–601 (1931)

    Google Scholar 

  55. M.A. Khan, A. Ahmed, N. Ali, T. Iqbal, A.A. Khan, M. Ullah, M. Shafique, Improved optical properties of tin antimony sulphide thin films for photovoltaics. Am. J. Mater. Sci. 4, 1–6 (2016)

    CAS  Google Scholar 

  56. E. Barrios-Salgado, Y. Rodríguez-Lazcano, J.P. Pérez-Orozco, A.R. Garcia-Angelmo, A new route for the synthesis of Sn3Sb2S6 thin films by chemical deposition. Rev. Mex. Ing. Quim. 19, 1363–1373 (2020)

    Article  CAS  Google Scholar 

  57. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Sol–gel derived Li–Mg co-doped ZnO films: preparation and characterization via XRD, XPS. FESEM. J. Alloys Comp. 512, 171–178 (2012)

    Article  CAS  Google Scholar 

  58. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    Article  CAS  Google Scholar 

  59. L.N. Ezenwaka, N.S. Umeokwonna, N.L. Okoli, Optical, structural, morphological, and compositional properties of cobalt doped tin oxide (CTO) thin films deposited by modified chemical bath method in alkaline medium. Ceram. Inter. 46, 6318–6325 (2020)

    Article  CAS  Google Scholar 

  60. A.M. El Sayed, S. Taha, M. Shaban, G. Said, Tuning the structural, electrical and optical properties of tin oxide thin film via cobalt doping and annealing. Superlattices Microstruct. 95, 1–13 (2016)

    Article  Google Scholar 

  61. Y. Mouchaal, A. Enesca, C. Mihoreanu, A. Khelil, A. Duta, Tuning the Opto-electrical properties of SnO2 thin films by Ag1+ and In3+ co-doping. Mater. Sci. Eng. B 199, 22–29 (2015)

    Article  CAS  Google Scholar 

  62. C. Sankar, V. Ponnuswamy, M. Manickam, R. Mariappan, R. Suresh, Structural, morphological, optical and gas sensing properties of pure and Ru doped SnO2 thin films by nebulizer spray pyrolysis techniques. Appl. Surf. Sci. 349, 931–939 (2015)

    Article  CAS  Google Scholar 

  63. S.W. Xue, X.T. Zu, W.G. Zheng, M.Y. Chen, X. Xiang, Effects of annealing and dopant concentration on the optical characteristics of ZnO: Al thin films by sol–gel technique. Physica B Condens. Matter 382, 201–204 (2006)

    Article  CAS  Google Scholar 

  64. R. Olvera-Rivas, F. De Moure-Flores, S.A. Mayén-Hernández, J. Quiñones-Galvan, A. Centeno, A. Sosa-Domínguez, J. Santos-Cruz, Effect of indium doping on structural, optical and electrical properties of cadmium sulfide thin films. Chalcogenide Lett. 17, 329–336 (2020)

    CAS  Google Scholar 

  65. M.A. Islam, K.S. Rahman, F. Haque, N. Dhar, M. Salim, M. Akhtaruzzaman, K. Sopian, N. Amin, Opto-electrical properties of in doped CdS thin films by co-sputtering technique. J. Ovonic Res. 10, 185–190 (2014)

    Google Scholar 

  66. C.E. Benouis, M. Benhaliliba, A.S. Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J. Alloys Compd. 490, 62–67 (2010)

    Article  CAS  Google Scholar 

  67. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Band gap engineering of ZnO thin films by In2O3 incorporation. J. Crystal Growth 310, 3019–3023 (2008)

    Article  CAS  Google Scholar 

  68. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953)

    Article  CAS  Google Scholar 

  69. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattice Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  70. E. Malainho, M.I. Vasilevskiy, P. Alpuim, S.A. Filonovich, Dielectric function of hydrogenated amorphous silicon near the optical absorption edge. J. Appl. Phys. 106, 073110 (2009)

    Article  Google Scholar 

  71. M. Aftab, M.Z. Butt, D. Ali, F. Bashir, T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021)

    Article  CAS  Google Scholar 

  72. B. Karthikeyan, R. Vettumperumal, Optical and electrochemical properties of pure and Ti-doped CdO nanoparticles for device applications. Mater. Sci. Eng. B 281, 115754 (2022)

    Article  CAS  Google Scholar 

  73. H. Latif, R. Zia, M. Irshad, H. Latif, Optical and structural properties of ZnxCd1-xS (x=0.2, 0.4, 0.6 and 0.8) thin films prepared by thermal evaporation technique. Int J Innov Educ Res 1(04), 30–46 (2013)

    Article  Google Scholar 

  74. W.W. Mullins, Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900 (1956)

    Article  Google Scholar 

  75. A.A. Abuelwafa, M.S. Abd El-sadek, S. Elnobi, T. Soga, Effect of transparent conducting substrates on the structure and optical properties of tin (II) oxide (SnO) thin films: comparative study. Ceram. Int. 47, 13510–13518 (2021)

    Article  CAS  Google Scholar 

  76. H.I. El Saeedy, H.A. Yakout, M.T. El Sayed, Fabrication and growth of linear and nonlinear optical behaviour of Cu2FeSnS4 spherical nanostructured thin films. Appl. Phys. A 126, 1–11 (2020)

    Article  Google Scholar 

  77. A.A. Atta, AC conductivity and dielectric measurements of bulk magnesium phthalocyanine (MgPc). J. Alloys Compd. 480, 564–567 (2009)

    Article  CAS  Google Scholar 

  78. J. Singh, Optical properties of condensed matter and applications (Wiley, New York, 2006)

    Book  Google Scholar 

  79. M.E. Lines, Bond-orbital theory of linear and nonlinear electronic response in ionic-crystals. II. Nonlinear response. Phys. Rev. B 41, 3383–3390 (1990)

    CAS  Google Scholar 

  80. M. Frumar, B. Frumarova, T. Wagner, G.K. Sujan, Amorphous and glassy semiconducting chalcogenides, in Reference module in materials science and materials engineering. (Elsevier Inc, Amsterdam, 2016)

    Google Scholar 

  81. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  82. N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the Penn gap in semiconductors. Infrared Phys. 20, 67–69 (1980)

    Article  CAS  Google Scholar 

  83. A. Parida, D. Sahoo, D. Alagarasan, S. Vardhrajperumal, R. Ganesan, R. Naik, Impact on nonlinear/linear optical and structural parameters in quaternary In15Ag10S15Se60 thin films upon annealing at different temperatures. Ceram. Int. 48, 15380–15389 (2022)

    Article  CAS  Google Scholar 

  84. M. Balasubramaniam, S. Balakumar, Exploration of electrochemical properties of zinc antimonate nanoparticles as supercapacitor electrode material. Mater. Sci. Semicond. Process. 56, 287–294 (2016)

    Article  CAS  Google Scholar 

  85. D. Gromadskyi, V. Chervoniuk, S. Kirillov, Cyclic voltammetric study of tin hexacyanoferrate for aqueous battery applications. J. Electrochem. Sci. Eng. 6, 225–234 (2016)

    Article  CAS  Google Scholar 

  86. G.B. Shombe, M.D. Khan, J. Choi, R.K. Gupta, M. Opallo, N. Revaprasadu, Tuning composition of CuCo2S4–NiCo2S4 solid solutions via solvent-less pyrolysis of molecular precursors for efficient supercapacitance and water splitting. RSC Adv. 12, 10675–10685 (2022)

    Article  CAS  Google Scholar 

  87. M. Farzi, M. Moradi, S. Hajati, J. Toth, A. Kazemzadeh, Synthesis of rod-like ternary Cu(Cd)-In-S and quaternary Cu-Cd-In-S by controlled ion exchange of MIL-68(In) derived indium sulfide for high energy-storage capacitor. Synth. Met. 278, 116815 (2021)

    Article  CAS  Google Scholar 

  88. J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, X. Meng, Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 7, 1601234 (2016)

    Article  Google Scholar 

  89. Y. Liu, S. Niu, R. Hu, Preparation and supercapacitive performance of manganese-cobalt sulfide/silver nanowires/graphene ternary nanocomposites. J. Mater. Sci. Mater. Electron. 32, 14337–14346 (2021)

    Article  CAS  Google Scholar 

  90. J. Tang, Y. Ge, J. Shen, M. Ye, Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem. Commun. 52, 1509–1512 (2016)

    Article  CAS  Google Scholar 

  91. Q. Zhang, R. Zhu, C. Zhao, R. Fan, Y. Zhang, Y. Cai, NiCo2S4/S composites used as cathode materials in lithium-sulfur batteries with high performance. NANO Br. Rep. Rev. 16, 2150029 (2021)

    CAS  Google Scholar 

  92. R. Bolagam, S. Um, Hydrothermal synthesis of cobalt ruthenium sulfides as promising pseudocapacitor electrode materials. Coatings 10, 200 (2020)

    Article  CAS  Google Scholar 

  93. F. Yu, V.T. Tiong, L. Pang, R. Zhou, X. Wang, E.R. Waclawik, K.K. Ostrikov, H. Wang, Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chin. Chem. Lett. 30, 1115–1120 (2019)

    Article  CAS  Google Scholar 

  94. S.A. Pawar, D.S. Patil, J.C. Shin, Electrochemical battery-type supercapacitor based on chemosynthesized Cu2S-Ag2S composite electrode. Electrochim. Acta 259, 664–675 (2018)

    Article  CAS  Google Scholar 

  95. R. Mohammadi, S. Shahrokhian, In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors. J. Electroanal. Chem. 802, 48–56 (2017)

    Article  CAS  Google Scholar 

  96. S.P. Gupta, S.W. Gosavi, D.J. Late, Q. Qiao, P.S. Walke, Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of a-MnO2 nanorods. Electrochim. Acta 354, 136626 (2020)

    Article  CAS  Google Scholar 

  97. A. Roy, A. Ray, S. Saha, S. Das, Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite. Int. J. Hydrog. 43, 7128–7139 (2018)

    Article  CAS  Google Scholar 

  98. A.D. Deshmukh, A.R. Urade, A.P. Nanwani, K.A. Deshmukh, D.R. Peshwe, P. Sivaraman, S.J. Dhoble, B.K. Gupta, Two-dimensional double hydroxide nanoarchitecture with high areal and volumetric capacitance. ACS Omega 3, 7204–7213 (2018)

    Article  CAS  Google Scholar 

  99. S. Ardizzone, G. Fregonara, S. Trasatti, ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.C. and A.T. acknowledge the financial support provided by the Student Development Fund under the Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Thailand. We also thank Dr. Veeramol Vailikhit for the support through the experimental set up of CV measurements.

Funding

This study was supported by The Student Development Fund under the Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

PC contributed to conceptualization, methodology, investigation, and data curation. AT contributed to conceptualization, methodology, supervision, writing—original draft preparation, and validation.

Corresponding author

Correspondence to Auttasit Tubtimtae.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 967 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chongngam, P., Tubtimtae, A. Structural, optical, and electrochemical characteristics of undoped and In3+-doped tin antimony sulfide thin films for device applications. J Mater Sci: Mater Electron 34, 71 (2023). https://doi.org/10.1007/s10854-022-09524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09524-8

Navigation