Skip to main content
Log in

Significant improvement of dielectric, magnetic, and gas-sensing properties of the (La0.8Ca0.2)0.6Bi0.4FeO3 nanomaterial: particles size effects

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Doped LaFeO3 materials are of high utility for energy storage devices and gas sensors. This work explores the effect of particles size and the preparation method on the physico-chemical properties of the (La0.8Ca0.2)0.6Bi0.4FeO3 compound. Accordingly, it was prepared by the Sol–Gel (LCBFO-SG) and the solid-state (LCBFO-SS) reaction methods. According to the Rietveld method, the adjusted XRD data confirm the distorted orthorhombic phase for both compounds. For both samples, the giant dielectric constant and the low loss tangent showed two relaxation processes at high- (grains boundary) and low-temperature regions (grains). The Havriliak-Negami ana Bergman formalism, used to adjust the imaginary part of dielectric Modulus, confirmed a non-Debye dielectric process. For both compounds, the conduction mechanism is ascribed to the non-Overlapping Small Polaron hopping between iron states. Importantly, Gas-sensing tests revealed that the LCBFO-SG nanoparticles exhibited higher response values and fast response/recovery times to ethanol, acetone, and H2S gases which is correlated with its lowest particles size. These results confirm that the LCBFO-SG could be an effective candidate for multi-gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.S. Nair, M. Kurian, Chromium-zinc ferrite nanocomposites for the catalytic abatement of toxic environmental pollutants under ambient conditions. J. Hazard. Mater. 344, 925–941 (2018)

    Article  CAS  Google Scholar 

  2. D.S. Nair, Manju Kurian, highly selective synthesis of diphenyl methane via liquid phase benzylation of benzene over cobalt doped zinc nanoferrite catalysts at mild conditions. J. Saudi Chem. Soc. 23, 127–132 (2019)

    Article  CAS  Google Scholar 

  3. M. Zhang, M.-S. Cao, J.-C. Shu, W.-Q. Cao, L. Li, J. Yuan, Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R-Reports 145, 100627 (2021)

    Article  Google Scholar 

  4. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, cectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  CAS  Google Scholar 

  5. A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  CAS  Google Scholar 

  6. A. Benali, L. Saher, M. Bejar, E. Dhahri, M.F.P. Graca, M.A. Valente, P. Sanguino, L.A. Helguero, K. Bachari, M.S. Silva Artur, B.F.O. Costa, Synthesis and physico-chemical characterization of Bi-doped Cobalt ferrite nanoparticles: cytotoxic effects against breast and prostate cancer cell lines. Eur. Phys. J. Plus. 137, 559 (2022)

    Article  CAS  Google Scholar 

  7. I.N. Apostolova, A.T. Apostolov, S. Trimper, J.M. Wesselinowa, Multiferroic properties of pure and transition metal doped LaFeO3 nanoparticles. Phys. Status Solidi B 258, 2000482 (2021)

    Article  CAS  Google Scholar 

  8. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite, (LaFeO3). Mater. Lett. 64, 415–418 (2010)

    Article  CAS  Google Scholar 

  9. P. Tirupathi, K. Raju, N. Peetla, R. Pantangi, M. Pastor, Giant dielectric permittivity and weak ferromagnetic behavior in Bi0.5La0.5Fe0.5Cr0.5O3 ceramic. AIP Conf. Proc. 1731, 050015 (2016)

    Article  Google Scholar 

  10. Z.T. Dong, Y. Li, K.L. Ren, S.Q. Yang, Y.M. Zhao, Y.J. Yuan, L. Zhang, S.M. Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH–Ni batteries. Int. J. Miner. Metall. Mater. 25, 1201–1207 (2018)

    Article  CAS  Google Scholar 

  11. M. Sugimoto, The past, present and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    Article  CAS  Google Scholar 

  12. M. Viret, D. Rubi, D. Colson, D. Lebeugle, A. Forget, P. Bonville, G. Dhalenne, R. Saint-Martin, G. André, F. Ott, β-NaFeO2, a new room-temperature multiferroic material Mater. Res. Bull. 47, 2294–2298 (2012)

    Article  CAS  Google Scholar 

  13. R. Gao, Q. Chen, W. Zhang, D. Zhou, D. Ning, G. Schumcher, D. Smirnov, L. Sun, X.F. Liu, Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. J. Catal. 384, 199–207 (2020)

    Article  CAS  Google Scholar 

  14. M. Pidburtnyi, B. Zanca, C. Coppex, S. Jimenez-Villegas, V. Thangadurai, A review on perovskite-type LaFeO3 based electrodes for CO2 reduction in solid oxide electrolysis cells: current understanding of structure-functional property relationships. Chem. Mater. 33, 4249–4268 (2021)

    Article  CAS  Google Scholar 

  15. C.C. Wang, L.W. Zhang, Dielectric properties of TbMnO3 ceramics. Appl. Phys. Lett. 90, 012904 (2007)

    Article  Google Scholar 

  16. J. Wu, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett 89, 217601 (2002)

    Article  Google Scholar 

  17. C. Chen, C.C. Wang, Polaronic relaxation in LaFeO3. Mate. Letters 89, 153 (2012)

    Article  CAS  Google Scholar 

  18. I.P. Raevski, L. Jastrabik, High dielectric permittivity in non-ferroelectric perovskite ceramics (A = Ba, Sr, Ca; B=Nb, Ta, Sb). J. Appl. Phys. 93, 4130 (2003)

    Article  CAS  Google Scholar 

  19. Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties. J. Appl. Biomater. Funct. Mater. 16, 17–25 (2018)

    CAS  Google Scholar 

  20. Su. Mingchao, D. Huan, Hu. Xueyu, K. Zhu, R. Peng, C. Xia, Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells. J. Power Sources 521, 230907 (2021)

    Google Scholar 

  21. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G. Mohan Rao, G.V. Shanbhag, N.G. Sundaram, Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B Chem. 329, 129211 (2021)

    Article  CAS  Google Scholar 

  22. G. Pecchi, M.G. Jiliberto, A. Buljan, E.J. Delgado, Relation between defects and catalytic activity of calcium doped LaFeO3 perovskite. Solid State Ion. 187, 27 (2011)

    Article  CAS  Google Scholar 

  23. K.J. Yoon, P.A. Zink, S. Gopalan, U.B. Pal, L.R. Pederson, Defect chemistry and electrical properties of (La0.8Ca0.2)0.95FeO3−δ. J. Electrochem. Soc. 156, B795 (2009)

    Article  CAS  Google Scholar 

  24. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x=0.05, 0.10 and 0.15) perovskite compounds. J. Alloys Compd. 653, 506 (2015)

    Article  CAS  Google Scholar 

  25. A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.F.P. Graca, M.A. Valente, Dielectric properties and alternating current conductivity of sol–gel made La0.8Ca0.2FeO3 compound. Chem. Phys. Letters. 637, 7 (2015)

    Article  CAS  Google Scholar 

  26. S. Smiy, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, M. Bendahan, Preparation of double-doping LaFeO3 thin film for ethanol sensing application. J. Mol. Struct. 1267, 133543 (2022)

    Article  CAS  Google Scholar 

  27. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B. 74, 224412–224429 (2006)

    Article  Google Scholar 

  28. S. Mallesh, J. Krishnamurthy, A.K. Das, A. Venimadhav, D. Chandrasekhar Kakarla, Anomalous freezing of dielectric polarons near magnetic ordering in multiferroic La0.5Bi0.5FeO3. Ceram. Int. 45, 6250–6254 (2019)

    Article  CAS  Google Scholar 

  29. R.C. Oliveira, E.A. Volnistem, E.A.C. Astrath, G.S. Dias, I.A. Santos, D. Garcia, J.A. Eiras, La doped BiFeO3 ceramics synthesized under extreme conditions: enhanced magnetic and dielectric properties. Ceram. Int. 47, 20407–20412 (2021)

    Article  CAS  Google Scholar 

  30. B. Purusottam Reddy, M. Chandra Sekhar, B. Poorna Prakash, Y. Suh, S.-H. Park, Photocatalytic, magnetic, and electrochemical properties of La doped BiFeO3 nanoparticles. Ceram. Int. 44, 19512–19521 (2018)

    Article  Google Scholar 

  31. C.M. Kavanagh, R.J. Goff, A.D. Aladine, P. Lightfoot, F.D. Morrison, Magnetically driven dielectric and structural behavior in Bi0.5La0.5FeO3. Chem. Mater. 24, 4563–4571 (2012)

    Article  CAS  Google Scholar 

  32. S. Sharma, M. Kumar, J.M. Siqueiros, O.R. Herrera, Phase evolution, magnetic study and evidence of spin-two phonon coupling in Ca modified Bi0.80La0.20FeO3 ceramics. J. Alloys Compd. 827, 154223 (2020)

    Article  CAS  Google Scholar 

  33. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, D. Xiao, Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1-xLaxFeO3 ceramics. J. Alloys Compd. 546, 57–62 (2013)

    Article  CAS  Google Scholar 

  34. A. Bougoffa, E.M. Benali, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, G. Otero-Irurueta, B.F.O. Costad, Investigation of temperature and frequency dependence of the dielectric properties of multiferroic (La0.8Ca0.2)0.4Bi0.6FeO3 nanoparticles for energy storage application. RSC Adv. 12, 6907–6917 (2022)

    Article  CAS  Google Scholar 

  35. U. Shimony, J.M. Knudsen, Mössbauer Studies on Iron in the Perovskites La1−xSrxFeO3 (0<~x<~1). Phys. Rev. 144, 361 (1966)

    Article  CAS  Google Scholar 

  36. P.K. Gallagher, J.B. MacChesney, Mössbauer effect in the system Sr1–xLaxFeO3. Symp. Faraday Soc. 1, 40 (1968)

    Article  Google Scholar 

  37. R. Bauminger, S.G. Cohen, A. Marinov, S. Ofer, E. Segal, Study of the low-temperature transition in magnetite and the internal fields acting on iron nuclei in some spinel ferrites, using mössbauer absorption. Phys. Rev. 122, 1447 (1961)

    Article  CAS  Google Scholar 

  38. H. Issaoui, A. Benali, M. Bejar, E. Dhahri, R.F. Santos, N. Kus, B.A. Nogueira, R. Fausto, B.F.O. Costa, Structural, morphological, raman, and mössbauer studies on (La0.8Ca0.2)1−xBixFeO3 (x = 0.0, 0.1, and 0.2) compounds. J. Supercond. Nov. Magn. 32, 1571–1582 (2019)

    Article  CAS  Google Scholar 

  39. A. Benali, B.M.G. Melo, P.R. Prezas, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, B.A. Nogueira, B.F.O. Costa, Structural, morphological, raman and ac electrical properties of the multiferroic sol-gel made Bi0.8Er0.1Ba0.1Fe0.96Cr0.02Co0.02O3 material. J. Alloys Compd. 775, 304–315 (2019)

    Article  CAS  Google Scholar 

  40. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x= 0.05, 0.10 and 0.15) perovskite compounds. J. Alloys Compd. 653, 506–512 (2015)

    Article  CAS  Google Scholar 

  41. E. Aref Omri, E. Dhahri, E.K. Hlil, Effect of Non-magnetic Ti4+ Ion doping at Mn-site on magnetocaloric properties and critical behavior in AMn1-xTixO3 (0 ≤ x ≤ 0.2) compounds. J. Low Temp. Phys. 204, 64–84 (2021)

    Article  Google Scholar 

  42. S.B. Amor, A. Benali, M. Bejar, E. Dhahri, K. Khirouni, M.A. Valente, M.P.F. Graça, F. Al-Turjman, J. Rodriguez, A. Radwan, Modulation of magnetism and study of impedance and alternating current conductivity of Zn0.4Ni0.6Fe2O4 spinel ferrite. J. Mol. Struct. 1184, 298–304 (2019)

    Article  CAS  Google Scholar 

  43. R.A. Young, The Rietveld Method (Oxford University Press, New York, 1993)

    Google Scholar 

  44. M. Horchani, A. Aref Omri, M.S. Benali, A. Eddine, E. Tozri, M.F.P. Dhahri, M.A. Graca, S.K. Valente, B.F.O. CostaJakka, Synthesis and investigation on the microstructural and electrical proprieties of Ni01Co05Cu04Fe2O4 ferrite prepared using sol-gel route. J. Solid State Chem. 308, 122898 (2022)

    Article  CAS  Google Scholar 

  45. M.P.F. Graça, M.G.F. da Silva, M.A. Valente, NaNbO3 crystals dispersed in a B2O3 glass matrix–structural characteristics versus electrical and dielectrical properties. Solid State Sci. 11, 570–577 (2009)

    Article  Google Scholar 

  46. E.V. Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C. 4, 1066–1079 (2016)

    Article  Google Scholar 

  47. J. Wu, D. Gao, T. Sun, J. Bi, Y. Zhao, Z. Ning, G. Fan, Z. Xie, Highly selective gas sensing properties of partially inversed spinel zinc ferrite towards H2S. Sens. Actuators B Chem. 235, 258 (2016)

    Article  CAS  Google Scholar 

  48. S. Peng, M. Ma, W. Yang, Z. Wang, J. Bi, J. Wu, Acetone sensing with parts-per-billion limit of detection using a BiFeO3-based solid solution sensor at the morphotropic phase boundary. Sens. Actuators B Chem. 313, 128060 (2020)

    Article  CAS  Google Scholar 

  49. A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.A. Valente, Dielectric properties and alternating current conductivity of sol-gel made La0.8Ca0.2FeO3 compound. Chem. Phys. Lett. 637, 7–12 (2015)

    Article  CAS  Google Scholar 

  50. T.-F. Cao, J.-Q. Dai, X.-W. Wang, Physical properties of Al doped BiFeO3 obtained by sol-gel route and two-step sintering process. Ceram. Int. 46, 7954–7960 (2020)

    Article  CAS  Google Scholar 

  51. W.Y. Xing, Y.N.N. Ma, Y.L. Bai, S.F. Zhao, Enhanced ferromagnetism of Er-doped BiFeO3 thin films derived from rhombohedral-to-orthorhombic phase transformations. Mater. Lett. 161, 216–219 (2015)

    Article  CAS  Google Scholar 

  52. L. Bai, M. Sun, W. Ma, J. Yang, J. Zhang, Y. Liu, Enhanced magnetic properties of co-doped BiFeO3 thin films via structural progression. J. Nanomater. 10, 1798 (2020)

    Article  CAS  Google Scholar 

  53. A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, E.K. Hlil, B.F.O. Costa, Structural, dielectric relaxation and magnetic features of the (La0.8Ca0.2)0.9Bi0.1Fe1−yTiyO3 (y = 00 and 01) nanoparticles. J. Alloys Compd. 876, 160222 (2021)

    Article  CAS  Google Scholar 

  54. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Effect of annealing temperature on structural, morphology and dielectric properties of La075Ba025FeO3 perovskite. Superlatt. Microstruct. 117, 260 (2018)

    Article  CAS  Google Scholar 

  55. N.S. Goncalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36 (2012)

    Article  CAS  Google Scholar 

  56. K.S. Rao, B. Tilak, K. Ch, V. Rajulu, A. Swathi, H. Workineh, A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic. J. Alloys Compd. 509, 7121 (2011)

    Article  CAS  Google Scholar 

  57. Y. Lin, L. Jiang, R. Zhao, C.-W. Nan, High-permittivity core/shell stuctured NiO based ceramics and their dielectric response mechanism. Phys. Rev. B. 72, 1 (2005)

    Article  Google Scholar 

  58. S. Ke, H. Fan, H. Huang, Dielectric relaxation in A2FeNbO6 (A = Ba, Sr, and Ca) perovskite ceramics. J. Electroceram. 22(1–3), 252–256 (2007)

    Google Scholar 

  59. S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Colossal dielectric response in barium iron niobate ceramics obtained by different precursors. Ceram. Int. 34(4), 1059–1062 (2008)

    Article  CAS  Google Scholar 

  60. J. Jumpatam, P. Thongbai, T. Yamwong, S. Maensiri, Effects of Bi3+ doping on microstructure and dielectric properties of CaCu3Ti4O12/CaTiO3 composite ceramics. Ceram. Int. 41(Suppl 1), S498–S503 (2015)

    Article  CAS  Google Scholar 

  61. A.R. Makhdoom, M.J. Akhtar, R.T.A. Khan, M.A. Hasan, F. Sher, A.N. Fitch, Association of microstructure and electric heterogeneity in BiFeO3. Mater. Chem. Phys. 143, 256–262 (2013)

    Article  CAS  Google Scholar 

  62. E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, Dielectric properties of BiFeO3 ceramics obtained from mechanochemically synthesized nanopowders. J. Electroceram. 27, 154–161 (2011)

    Article  CAS  Google Scholar 

  63. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phys. Lett. 94(062904), 1–3 (2009)

    Google Scholar 

  64. F. Kremer, A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  65. P. Debye, Polar Molecules (Dover, New York, 1929)

    Google Scholar 

  66. K. Cole, R. Cole, Dispersion and absorption in dielectrics. I: alternating current characteristics. J. Chem. Phys. 9, 341–352 (1941)

    Article  CAS  Google Scholar 

  67. D. Davidson, R. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951)

    Article  CAS  Google Scholar 

  68. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356–1365 (2000)

    Article  CAS  Google Scholar 

  69. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter 6, 5707–5716 (1994)

    Article  CAS  Google Scholar 

  70. A. Rai, A.K. Thakur, Influence of co-substitution driven property tailoring in lanthanum orthoferrites (LaFeO3). Ceram. Int. 43, 13828–13838 (2017)

    Article  CAS  Google Scholar 

  71. K.K. Bhargav, S. Ram, S.B. Majumder, Small polaron conduction in lead modified lanthanum ferrite ceramics. J. Alloys Compd. 638, 334–343 (2015)

    Article  CAS  Google Scholar 

  72. M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, Electrical characterization of SiO2: LiNbO3 glass and glass–ceramics using dc conductivity, TSDC measurements and dielectric spectroscopy. J. Non-Cryst. Solids 353, 4390–4394 (2007)

    Article  Google Scholar 

  73. M. Dussouze, Second harmonic generation in glasses borophosphate sodium and niobium thermal polarization, thesis (University Bordeaux I, France, 2005)

    Google Scholar 

  74. H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H3N(CH2)3NH3)[V4O10]. Mater Res. Bull. 48, 1978–1983 (2013)

    Article  CAS  Google Scholar 

  75. F. Ben Bacha, S. Megdiche Borchani, M. Dammak, M. Megdiche, Optical and complex impedance analysis of double tungstates of mono- and trivalent metals for LiGd(WO4)2 compound. J. Alloys Compds. 712, 657–665 (2017)

    Article  CAS  Google Scholar 

  76. A.R. Long, N. Balkan, M.R. Hogg, R.P. Ferrier, A.C. loss in sputtered hydrogenated amorphous germanium measurements at around liquid-nitrogen temperatures. Phil. Mag. B. 45, 497 (1982)

    Article  CAS  Google Scholar 

  77. A. Dhahri, A. Zaouali, A. Benali, N. Abdelmoulla, J. Massoudi, K. Nouri, L. Bessais, M.P.F. Graça, M.A. Valente, B.F.O. Costa, Synthesis and study of the structural and dielectric properties of La0.67Ca0.2Ba0.13Fe1−xMnxO3 ferrites (x = 0, 0.03 and 0.06). J. Mater. Sci.: Mater Electron. 32, 7926–7942 (2021)

    CAS  Google Scholar 

  78. A. Benali, M. Bejar, E. Dhahri, M. Sajieddine, M.P.F. Graça, M.A. Valente, Magnetic, raman and Mössbauer properties of double-doping LaFeO3 perovskite oxides. J. Mater. Chem. Phys. 149–150, 467–472 (2015)

    Article  Google Scholar 

  79. W. Li, F. Yang, P. Xiong, Y. Jia, J. Liu, X. Yan, X. Chen, Effect of Bi-doping on the electrocatalytic properties of LaFeO3 powders prepared by sol–gel method. J. Mater. Sci. 54, 7460 (2019)

    Article  CAS  Google Scholar 

  80. A. Rezanezhad, E. Rezaie, L. Saleh, A. Hajalilou, E. Abou-zari-lotf, N. Arsalani, Outstanding supercapacitor perfor-mance of Nd and Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Electrochim. Acta 335, 135699 (2020)

    Article  CAS  Google Scholar 

  81. L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305 (2011)

    Article  CAS  Google Scholar 

  82. H. Issaoui, A. Benali, M. Bejar, E. Dhari, R.F. Santos, N. Kus, B.A. Nogueira, R. Fausto, B.F.O. Costa, Structural, Morphological and Mössbauer studies on (La0.8Ca0.2)1-xBixFeO3 compounds. J. Supercond. Nov. Magn. 32, 1571–1582 (2019)

    Article  CAS  Google Scholar 

  83. H. Issaoui, A. Benali, M. Bejar, E. Dhahri, B.F.O. Costa, Mössbauer and magnetic studies of (La0.8Ca0.2)1-xBixFeO3 perovskites. Hyp. Inter. 241, 26 (2022)

    Article  Google Scholar 

  84. H. Issaoui, A. Benali, M. Bejar, E. Dhahri, R.F. Santos, B.F.O. Costa, Effect of the annealing temperature and of Bi substitution on the structural and magnetic behaviors of double-doping (Bi/La, Ca)(La0.8Ca0.2)1-xBixFeO3 compounds. New J. Chem. 44, 9813–9821 (2020)

    Article  CAS  Google Scholar 

  85. Ph. Boullay, M. Hervieu, N. Nguyen, B. Raveau, Synthesis, average structure, and magnetic properties of oxygen deficient perovskites (Ba2−3xBi3x−1)(Fe2xBi1−2x)O2+3/2x. J. Solid-State Chemistry. 147, 45–57 (1999)

    Article  CAS  Google Scholar 

  86. C. Lepoittevin, S. Malo, N. Barrier, N. Nguyen, G. Van Tendeloo, M. Hervieu, Long-range ordering in the Bi1−xAexFeO3−x/2 perovskites: Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75. J. Solid-State Chemistry. 181(10), 2601–2609 (2008)

    Article  CAS  Google Scholar 

  87. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, M. Singh, Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv 6, 43080–43090 (2016)

    Article  CAS  Google Scholar 

  88. S. Han, C.S. Kim, Weak ferromagnetic behavior of BiFeO3 at low temperature. J. Appl. Phys. 113, 1–3 (2013)

    Article  Google Scholar 

  89. C.-H. Chou, Y. Nagarjuna, Z.-C. Yang, Y.-J. Hsiao, S.-C. Wang, Catalytic effect of Ag embedded with ZnO prepared by Co-sputtering on H2S gas sensing MEMS device. Vacuum 202, 111210 (2022)

    Article  CAS  Google Scholar 

  90. A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, A. Radwan, High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound. J. Mater. Sci. Mater. Electron. 30, 12389–12398 (2019)

    Article  CAS  Google Scholar 

  91. J. Xiang, X. Chen, X. Zhang, L. Gong, Y. Zhang, K. Zhang, Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties. Mater. Chem. Phys. 213, 122–129 (2018)

    Article  CAS  Google Scholar 

  92. E.M. Benali, A. Benali, M. Bejar, E. Dhahri, V.A. Khomchenko, L. Peng, Wu. Jiangtao, B.F.O. Costa, Structural, morphological and excellent gas sensing properties of La1–2xBaxBixFeO3 (0.00 ≤ x ≤ 0.20) nanoparticles. J. Alloys Compd. 883, 160856 (2021)

    Article  CAS  Google Scholar 

  93. T.T.N. Phan, T.T.M. Dinh, M.D. Nguyen, D. Li, C.N. Phan, T.K. Pham, C.T. Nguyen, T.H. Pham, Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sens. Actuators B: Chem. 354, 131195 (2022)

    Article  Google Scholar 

  94. X. Liu, B. Cheng, H. Qin, P. Song, S. Huang, R. Zhang, Hu. Jifan, M. Jiang, Preparation, electrical and gas-sensing properties of perovskite-type La1-xMgxFeO3 semiconductor materials. J. Phys. Chem. Solids 68, 511–515 (2007)

    Article  CAS  Google Scholar 

  95. C. Doroftei, P.D. Popa, F. Iacomi, Selectivity between methanol and ethanol gas of La–Pb–Fe–O perovskite synthesized by novel method. Sens Actuators A 190, 176–180 (2013)

    Article  CAS  Google Scholar 

  96. P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol-gel route. Curr. Appl. Phys. 11, 451–456 (2011)

    Article  Google Scholar 

  97. T. Tong, J. Chen, D. Jin, J. Chen, Preparation and gas sensing characteristics of BiFeO3 crystallites. Mater. Lett. 197, 160–162 (2017)

    Article  CAS  Google Scholar 

  98. Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of response to formaldehyde at Ag–LaFeO3 based gas sensors through incorporation of SWCNTs. Sens. Actuators B 195, 509–514 (2014)

    Article  CAS  Google Scholar 

  99. W. Zeng, T.M. Liu, D.J. Liu, Formaldehyde gas sensing property and mechanism of TiO2–Ag nanocomposite. Physica B 405, 4235–4239 (2010)

    Article  CAS  Google Scholar 

  100. H.J. Kim, J.H. Lee, highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607 (2014)

    Article  CAS  Google Scholar 

  101. J.-C. Ding, H.-Y. Li, Z.-X. Cai, X.-X. Wang, X. Guo, Near room temperature CO sensing by mesoporous LaCoO3 nanowires functionalized with Pd nanodots. Sens. Actuators B Chem. 222, 517 (2016)

    Article  CAS  Google Scholar 

  102. X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. Sens. Actuators B Chem. 129, 53 (2008)

    Article  CAS  Google Scholar 

  103. X. Liu, B. Cheng, H. Qin, P. Song, S. Huang, R. Zhang et al., Preparation, electrical and gas-sensing properties of perovskite-type La1−xMgxFeO3 semiconductor materials. Phys. Chem. Solids 68, 511 (2007)

    Article  CAS  Google Scholar 

  104. C. Xiangfeng, L. Xingqin, M. Guangyao, Effects of CdO dopant on the gas sensitivity properties of ZnFe2O4 semiconductors. Sens. Actuators B Chem. 65, 64 (2000)

    Article  CAS  Google Scholar 

  105. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40, 14367 (2014)

    Article  CAS  Google Scholar 

  106. C. Balamurugan, D.-W. Lee, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection. Sens. Actuators B Chem. 221, 857 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from: (1) The Deanship of Scientific Research at Jouf University under Grant No. DSR-2021-03-03145. (2) Fundação para a Ciência e a Tecnologia (FCT), Portugal, under the Projects No. UID/04564/2020 and UID/CTM/50025/2013 I3N and for the PhD Grant No. SFRH/BD/117487/2016. (3) QREN-Mais Centro Project No. ICT_2009_02_012_1890.

Author information

Authors and Affiliations

Authors

Contributions

AB, EMB, BMGM, AT: investigation conceptualization writing—original draft validation; MB, ED, MPFG, MAV, BFOC: validation writing—review and editing; LP, JW: funding acquisition—formal analysis.

Corresponding authors

Correspondence to A. Benali or A. Tozri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involve in human and animal rights

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, A., Benali, E.M., Melo, B.M.G. et al. Significant improvement of dielectric, magnetic, and gas-sensing properties of the (La0.8Ca0.2)0.6Bi0.4FeO3 nanomaterial: particles size effects. J Mater Sci: Mater Electron 34, 45 (2023). https://doi.org/10.1007/s10854-022-09408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09408-x

Navigation