Skip to main content
Log in

Studies on structural, dielectric behavior, and electrical properties of BiBaNiNbO6 double perovskite for electronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, morphological, dielectric and electrical properties for BiBaNiNbO6 sample prepared by sol–gel method have been investigated in this work. X-ray investigation confirms the formation of single phase with rhombohedral crystal structure with space group R\(\overline{3 }\)C at room temperature. Energy dispersion spectroscopy (EDS) analysis and scanning electron microscopy were used to confirm the chemical make-up of the synthesized molecule and the morphology of the grain size (SEM). The Z″(f) curve confirms the appearance of a relaxation phenomenon in the sample which exhibits semiconductor behavior. An electrical circuit consisting of a link of grain and grain boundary elements is used to analyze the Nyquist plots between the ranges of 200 and 360 K and 100 Hz and 1 MHz, respectively. The variation of electrical conductivity at various temperatures obeys the Jonscher’s power law. The Non-overlapping Small Polaron Tunneling (NSPT) is the appropriate model to explain the conduction mechanism for the sample. The estimated activation energies from the DC conductivity and electrical impedance are close implying that the relaxation and conduction processes are caused by the same type of charge carriers. Electrical and optical properties show higher electrical resistivity and considerable visible light absorption which makes the prepared BiBaNiNbO6 double perovskite suitable candidate for electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3–26 (2000)

    Article  CAS  Google Scholar 

  2. E.G. Babakhani, J. Towfighi, L. Shirazi, A. Nakhaeipour, A. Zamaniyan, Z. Shafiei, J. Mater. Sci. Technol. 28, 177 (2012)

    Article  CAS  Google Scholar 

  3. F. Ramezanipour, J.E. Greedan, L.M.D. Cranswick, V. Ovidiu Garlea, R.L. Donaberger, J. Siewenie, J. Chem. Soc. 134, 3215 (2012)

    Article  CAS  Google Scholar 

  4. D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757–6762 (2010)

    Article  CAS  Google Scholar 

  5. F.M. Casallas, E. Vera-Lópeza, D.A. Landínez Téllez, D.E. Saavedra Mesa, J. Roa-Rojas, J. Phys. 480, 012034 (2014)

    CAS  Google Scholar 

  6. O. Ortiz-Diaz, M.J.A. Rodriguez, F. Fajardo, D.A.L. Tellez, J. Roa-Rojas, J. Phys. B 398, 248 (2007)

    Article  CAS  Google Scholar 

  7. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy 47(31), 14319–14330 (2022)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, H.A. Alshamsi, O. Amiri et al., J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari et al., J. Mater. Sci.: Mater. Electron. 27(2), 1244–1253 (2016)

    CAS  Google Scholar 

  10. S.R. Yousefi, M. Ghanbari, O. Amiri et al., J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)

    Article  CAS  Google Scholar 

  11. S.R. Yousefi, A. Sobhani, H.A. Alshamsi et al., RSC Adv. 11(19), 11500–11512 (2021)

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  13. Y.-H. Huang, R.I. Dass, Z.-L. Xing, J.B. Goodenough, Science 312, 254–257 (2006)

    Article  CAS  Google Scholar 

  14. W. Zhang, M. Anaya, G. Lozano, M.E. Calvo, M.B. Johnston, H. Míguez, H.J. Snaith, Nano Lett. 15(3), 1698 (2015)

    Article  CAS  Google Scholar 

  15. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  16. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J Mater Sci Mater Electron. 27(2), 1244-1253 (2016)

    Article  CAS  Google Scholar 

  17. K. Iben Nassar, N. Rammeh, S.S. Teixeira, M.P.F. Graça, J. Electron. Mater. 51, 370–377 (2022)

    Article  CAS  Google Scholar 

  18. M. Mohamed, K. Iben Nassar, M. Mohamed, N. Rammeh, M.P.F. Graça, J. Mol. Struct. 1258, 132658 (2022)

    Article  CAS  Google Scholar 

  19. K. Iben Nassar, M. Slimi, N. Rammeh, S.S. Teixeira, M.P.F. Graça, Appl. Phys. A 127, 940 (2021)

    Article  CAS  Google Scholar 

  20. K. Iben Nassar, M. Slimi, N. Rammeh, A. Bouhamed, A. Njeh, O. Kanoun, J. Mater. Sci.: Mater. Electron. 32, 24050–24057 (2021)

    Google Scholar 

  21. N. Moreno, L. Barbosa, D.R. Ardila, J.P. Andreeta, J. Supercond. Nov. Magn. 26, 2501–2503 (2013)

    Article  CAS  Google Scholar 

  22. R. Borges, R. Thomas, C. Cullinan, J. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart, A. Revcolevschi, J. Phys.: Condens. Matter 11, L445 (1999)

    CAS  Google Scholar 

  23. W.E. Pickett, D.J. Singh, Phys. Rev. B 53, 1146 (1996)

    Article  CAS  Google Scholar 

  24. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    Article  CAS  Google Scholar 

  25. N.A. Benedek, C.J. Fennie, J. Phys. Chem. C 117, 13339 (2013)

    Article  CAS  Google Scholar 

  26. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook et al., Nat. Mater. 13, 31–5 (2014)

    Article  CAS  Google Scholar 

  27. A. Manohar, C. Krishnamoorthi, J. Alloys Compd. 722, 818–827 (2017)

    Article  CAS  Google Scholar 

  28. A. Manohar, C. Krishnamoorthi, J. Photochem. Photobiol. B 177, 95–104 (2017)

    Article  CAS  Google Scholar 

  29. A. Manohar, C. Krishnamoorthi, J. Mater. Sci.: Mater. Electron. 29(1), 737–745 (2018)

    CAS  Google Scholar 

  30. A. Manohar, C. Krishnamoorthi, K.C.B.B. Naidu et al., Appl. Phys. A 125(7), 1–10 (2019)

    Article  Google Scholar 

  31. A. Manohar, V. Vijayakanth, S.V.P. Vattikuti et al., Mater. Chem. Phys. 286, 126117 (2022)

    Article  CAS  Google Scholar 

  32. A. Manohar, V. Vijayakanth, K.H. Kim, J. Alloys Compd. 886, 161276 (2021)

    Article  CAS  Google Scholar 

  33. A. Manohar, V. Vijayakanth, R. Hong, J. Mater. Sci.: Mater. Electron. 31(1), 799–806 (2020)

    CAS  Google Scholar 

  34. A. Manohar, C. Krishnamoorthi, J. Magn. Magn. Mater. 443, 267–274 (2017)

    Article  CAS  Google Scholar 

  35. A. Guinier, Théorie et technique de la Radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p.462

    Google Scholar 

  36. V.M. Goldschmidt, Geochemische Verteilungsgesetetze der Element VII, VIII (1927/1928)

  37. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  38. M.D. Ingram, Phys. Chem. Glass. 28, 215 (1987)

    CAS  Google Scholar 

  39. H. Kolodziej, L. Sobczyk, Acta Phys. Pol. A 39, 59 (1971)

    CAS  Google Scholar 

  40. N. Zouari, H. Khemakhem, M. Gargouri, M. Mnif, T. Mhiri, A. Daoud, Phys. Status Solidi B 213, 219 (1999)

    Article  CAS  Google Scholar 

  41. S. Nasri, M. Megdiche, M. Gargouri, K. Guidara, Ionics 20, 399–407 (2014)

    Article  CAS  Google Scholar 

  42. P. Thongbai, S. Tangwancharoen, T. Yamwong, S. Maensiri, J. Phys.: Condens. Matter 20, 395227–395238 (2008)

    Google Scholar 

  43. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Appl. Phys. A 88, 217–222 (2007)

    Article  CAS  Google Scholar 

  44. A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, J. Electrochem. Soc. 155, B36–B41 (2008)

    Article  CAS  Google Scholar 

  45. M.D. Migahed, N.A. Bakr, M.I. Abdel-Hamid, O. EL-Hannafy, M. El-Nimr, J. Appl. Polym. Sci. 59, 655–662 (1996)

    Article  CAS  Google Scholar 

  46. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion. 146, 329 (2002)

    Article  CAS  Google Scholar 

  47. A.K. Jonscher, Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  48. A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)

    Article  CAS  Google Scholar 

  49. P. Banerji Behera, R.N.P. Nayak, J. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Article  Google Scholar 

  50. X. Lecleac’H, Physics 40, 27 (1979)

    Google Scholar 

  51. A. Ghosh, Phys. Rev. B 42, 5665 (1990)

    Article  CAS  Google Scholar 

  52. K. Shimakawa, Philos. Mag. B 46, 123 (1982)

    Article  CAS  Google Scholar 

  53. S.R. Elliott, Philos. Mag. B 36, 129 (1978)

    Google Scholar 

  54. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, J. Phys. B 340, 324–328 (2003)

    Article  Google Scholar 

  55. S.R. Elliot, Adv. Phys. 36, 135–217 (1987)

    Article  Google Scholar 

  56. K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors take public responsibility for the content of the work submitted for review. The contributions of all authors must be described in the following manner: The authors confirm contribution to the paper as follows: study conception and design: KIN and FT; data collection: MS; analysis and interpretation of results: NR and AN; draft manuscript preparation: SST and MPFG. All authors reviewed the results and approved the final version of the manuscript. The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to K. Iben Nassar.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iben Nassar, K., Tayari, F., Slimi, M. et al. Studies on structural, dielectric behavior, and electrical properties of BiBaNiNbO6 double perovskite for electronic applications. J Mater Sci: Mater Electron 33, 27147–27157 (2022). https://doi.org/10.1007/s10854-022-09377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09377-1

Navigation