Skip to main content
Log in

An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study presents the development of an electronic nose comprising eight homemade sensors with pure P3HT and doped with different materials. The objective is to electronically identify the gases exposed on these sensors and evaluate the accuracy of target gas classification. The resistance variation for each sensor is measured over time and the collected data were processed by three different identification techniques as following: principal component analysis (PCA), linear discriminate analysis (LDA), and nearest neighbor analysis (kNN). The merit factor for the analysis is the relative modulation of the resistance is very important and computationally gives different results. In addition, the fact that we have sensors made with innovative materials where the reproducibility of the response for the same material can be a constraint in the recognition. In contrast, we have shown that despite the lack of reproducibility for the same material on two different sensors and despite the instability during the ten last sec, we have good recognition rates and we can even say which algorithm is better. It is noted that the LDA is the most reliable and efficient method for gas classification with a prediction accuracy equal to 100%, whereas it reach 93.52% and 73.14% for PCA and kNN, respectively, for other techniques for 40% of training dataset and 60% of testing dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors agree with the availability of data transparency as per journal guidelines.

References

  1. J. Tan, J. Xu, Artif. Intell. Agric. 4, 104 (2020). https://doi.org/10.1016/j.aiia.2020.06.003

    Article  Google Scholar 

  2. F. Rabeb, B. Souhir, K. Abdermaceur, and S. Mounir, in 14th Int. conf. sci. tech. autom. control comput. eng. - STA’2013 (IEEE, 2013), pp. 174–178. https://doi.org/10.1109/STA.2013.6783126

  3. J.A. Covington, S. Marco, K.C. Persaud, S.S. Schiffman, H.T. Nagle, IEEE Sens. J. 21, 12969 (2021). https://doi.org/10.1109/JSEN.2021.3076412

    Article  Google Scholar 

  4. L. Tiggemann, S.C. Ballen, C.M. Bocalon, A.M. Graboski, A. Manzoli, J. Steffens, E. Valduga, C. Steffens, Innov. Food Sci. Emerg. Technol. 43, 112 (2017). https://doi.org/10.1016/j.ifset.2017.08.003

    Article  CAS  Google Scholar 

  5. S. Bedoui, R. Faleh, H. Samet, and A. Kachouri, in 10th Int. multi-conferences syst. signals devices 2013 (IEEE, 2013), pp. 1–6. https://doi.org/10.1109/SSD.2013.6564152

  6. W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin, X. Su, X. Bai, H. Haick, M. Yao, W. Wu, Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800488

    Article  Google Scholar 

  7. R. Gutierrez-Osuna, IEEE Sens. J. 2, 189 (2002). https://doi.org/10.1109/JSEN.2002.800688

    Article  Google Scholar 

  8. Y. Wang, A. Liu, Y. Han, T. Li, Polym. Int. 69, 7 (2020). https://doi.org/10.1002/pi.5907

    Article  CAS  Google Scholar 

  9. A.D. Wilson, Procedia Technol. 1, 453 (2012). https://doi.org/10.1016/j.protcy.2012.02.101

    Article  Google Scholar 

  10. A. Nasri, M. Pétrissans, V. Fierro, A. Celzard, Mater. Sci. Semicond. Process. 128, 105744 (2021). https://doi.org/10.1016/j.mssp.2021.105744

    Article  CAS  Google Scholar 

  11. G. Korotcenkov, V. Brinzari, B.K. Cho, Microchim. Acta 183, 1033 (2016). https://doi.org/10.1007/s00604-015-1741-z

    Article  CAS  Google Scholar 

  12. F.A. Sébastien-Pecqueur, M. Mastropasqua-Talamo, D. Guérin, P. Blanchard, J. Roncali, D. Vuillaume, Adv. Electron. Mater. (2018). https://doi.org/10.1002/aelm.201800166

    Article  Google Scholar 

  13. M. Angelopoulos, IBM, J. Res. Dev. 45, 57 (2001). https://doi.org/10.1147/rd.451.0057

    Article  CAS  Google Scholar 

  14. M. Yasin, T. Tauqeer, K.S. Karimov, S.E. San, A. Kösemen, Y. Yerli, A.V. Tunc, Microelectron. Eng. 130, 13 (2014). https://doi.org/10.1016/j.mee.2014.08.010

    Article  CAS  Google Scholar 

  15. H.S. Nalwa, Handbook of advanced electronic and photonic materials and devices (Academic press, Elsevier, 2001)

    Google Scholar 

  16. H. Seon, B. Kim, J. Kang, IEEE Trans. Nucl. Sci. 64, 1739 (2017). https://doi.org/10.1109/TNS.2016.2645228

    Article  CAS  Google Scholar 

  17. S. Nambiar, J.T.W. Yeow, Biosens. Bioelectron. 26, 1825 (2011). https://doi.org/10.1016/j.bios.2010.09.046

    Article  CAS  Google Scholar 

  18. R. Megha, F.A. Ali, Y.T. Ravikiran, C.H.V.V. Ramana, A.B.V. Kiran Kumar, D.K. Mishra, S.C. Vijayakumari, D. Kim, Inorg. Chem. Commun. 98, 11 (2018). https://doi.org/10.1016/j.inoche.2018.09.040

    Article  CAS  Google Scholar 

  19. D.K. Aswal, S.K. Gupta, Science and technology of chemiresistive gas sensors (Nova publishers, New york, 2007)

    Google Scholar 

  20. K. Ferchichi, R. Bourguiga, K. Lmimouni, S. Pecqueur, Synth. Met. 262, 116352 (2020). https://doi.org/10.1016/j.synthmet.2020.116352

    Article  CAS  Google Scholar 

  21. C.-G. Kuo, J.-H. Chen, Y.-C. Chao, P.-L. Chen, Sensors 18, 37 (2017). https://doi.org/10.3390/s18010037

    Article  CAS  Google Scholar 

  22. A. Assadi, G. Gustafsson, M. Willander, C. Svensson, O. Inganäs, Synth. Met. 37, 123 (1990). https://doi.org/10.1016/0379-6779(90)90135-8

    Article  CAS  Google Scholar 

  23. C. Bertoni, P. Naclerio, E. Viviani, S. Dal Zilio, S. Carrato, A. Fraleoni-Morgera, Sensors 19, 1296 (2019). https://doi.org/10.3390/s19061296

    Article  CAS  Google Scholar 

  24. Z. Ma, W. Shi, K. Yan, L. Pan, G. Yu, Chem. Sci. 10, 6232 (2019). https://doi.org/10.1039/C9SC02033K

    Article  CAS  Google Scholar 

  25. J.-S. Do, S.-H. Wang, Sens. Actuators B 185, 39 (2013). https://doi.org/10.1016/j.snb.2013.04.080

    Article  CAS  Google Scholar 

  26. J.N. Barisci, G.G. Wallace, M.K. Andrews, A.C. Partridge, P.D. Harris, Sens. Actuators B 84, 252 (2002). https://doi.org/10.1016/S0925-4005(02)00033-3

    Article  CAS  Google Scholar 

  27. J.W. Gardner, P.N. Bartlett, Sens. Actuators B 18, 210 (1994). https://doi.org/10.1016/0925-4005(94)87085-3

    Article  Google Scholar 

  28. R. Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri, IEEE Sens. J. 16, 3123 (2016). https://doi.org/10.1109/JSEN.2016.2521578

    Article  CAS  Google Scholar 

  29. S. Fuentes, V. Summerson, C. Gonzalez Viejo, E. Tongson, N. Lipovetzky, K. L. Wilkinson, C. Szeto, and RR. Unnithan. (2020). Sensors. 20, 5108. https://doi.org/10.3390/s20185108

  30. V. Schroeder, E.D. Evans, Y.-C.M. Wu, C.-C.A. Voll, B.R. McDonald, S. Savagatrup, T.M. Swager, ACS Sens. 4, 2101 (2019). https://doi.org/10.1021/acssensors.9b00825

    Article  CAS  Google Scholar 

  31. S. Güney, A. Atasoy, Sens. Actuators B 166–167, 721 (2012). https://doi.org/10.1016/j.snb.2012.03.047

    Article  CAS  Google Scholar 

  32. O. Djedidi, M.A. Djeziri, N. Morati, J.-L. Seguin, M. Bendahan, T. Contaret, Sens. Actuators B 339, 129817 (2021). https://doi.org/10.1016/j.snb.2021.129817

    Article  CAS  Google Scholar 

  33. R. Ionescu, E. Llobet, X. Vilanova, J. Brezmes, J.E. Sueiras, J. Calderer, X. Correig, Analyst 127, 1237 (2002). https://doi.org/10.1039/B205009A

    Article  CAS  Google Scholar 

  34. C.G. Viejo, S. Fuentes, A. Godbole, B. Widdicombe, R.R. Unnithan, Sens. Actuators B 308, 127688 (2020). https://doi.org/10.1016/j.snb.2020.127688

    Article  CAS  Google Scholar 

  35. Z. Haddi, A. Amari, H. Alami, N. El Bari, E. Llobet, B. Bouchikhi, Sens. Actuators B 155, 456 (2011). https://doi.org/10.1016/j.snb.2010.12.047

    Article  CAS  Google Scholar 

  36. A. Boujnah, A. Boubaker, A. Kalboussi, K. Lmimouni, S. Pecqueur, Synth. Met. 280, 116890 (2021). https://doi.org/10.1016/j.synthmet.2021.116890

    Article  CAS  Google Scholar 

  37. H. Men, K. Ning, D. Chen, Sens. Transducers 157, 57 (2013)

    CAS  Google Scholar 

  38. M. Abdelkhalek, S. Alfayad, F. Benouezdou, M.B. Fayek, L. Chassagne, IEEE Access 7, 98267 (2019). https://doi.org/10.1109/ACCESS.2019.2928875

    Article  Google Scholar 

  39. A. Berna, Sensors 10, 3882 (2010). https://doi.org/10.3390/s100403882

    Article  CAS  Google Scholar 

  40. P. Giungato, M. Renna, R. Rana, S. Licen, P. Barbieri, Food Res. Int. 115, 65 (2019). https://doi.org/10.1016/j.foodres.2018.07.067

    Article  CAS  Google Scholar 

  41. G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, A. Mueller, GetMobile mob. Comput. Commun. 19, 29 (2015)

    Google Scholar 

  42. M. Bougrini, K. Tahri, Z. Haddi, T. Saidi, N. El Bari, B. Bouchikhi, J. Sens. 2014, 1 (2014). https://doi.org/10.1155/2014/245831

    Article  CAS  Google Scholar 

  43. M.A.H. Khan, B. Thomson, R. Debnath, A. Motayed, M.V. Rao, IEEE Sens. J. 20, 6020 (2020). https://doi.org/10.1109/JSEN.2020.2972542

    Article  CAS  Google Scholar 

  44. J.H. Leopold, L.D.J. Bos, P.J. Sterk, M.J. Schultz, N. Fens, I. Horvath, A. Bikov, P. Montuschi, C. Di Natale, D.H. Yates, A. Abu-Hanna, J. Breath Res. 9, 046002 (2015). https://doi.org/10.1088/1752-7155/9/4/046002

    Article  Google Scholar 

  45. S. Okur, M. Sarheed, R. Huber, Z. Zhang, L. Heinke, A. Kanbar, C. Wöll, P. Nick, U. Lemmer, Chemosensors 9, 31 (2021). https://doi.org/10.3390/chemosensors9020031

    Article  CAS  Google Scholar 

  46. S.A. Fatemi Heydarabad, M.H. Raoufat, S. Kamgar, A. Karami, J. Food. Meas. Charact. 13, 107 (2019). https://doi.org/10.1007/s11694-018-9924-z

    Article  Google Scholar 

  47. X. Su, D. Chen, N. Li, A.C. Stevenson, G. Li, R. Hu, Sensors Actuators A Phys. 305, 111938 (2020). https://doi.org/10.1016/j.sna.2020.111938

    Article  CAS  Google Scholar 

  48. M.A. Akbar, A.A.S. Ali, A. Amira, F. Bensaali, M. Benammar, M. Hassan, A. Bermak, IEEE Sens. J. 16, 5734 (2016). https://doi.org/10.1109/JSEN.2016.2565721

    Article  Google Scholar 

Download references

Acknowledgements

This work was in collaboration between the laboratory of microelectronics and instrumentation of the faculty of sciences of Monastir, Tunisia and the central laboratory of IEMN in Lille, France. In addition, the gas sensor devices used in this work are already fabricated and characterized and published in our paper entitled “Mildly doped polythiophene with triflates for molecular recognition [36].”

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AB contributed to methodology, formal analysis, investigation, writing of the original draft, writing, reviewing, & editing of the manuscript, and visualization. AB contributed to writing, reviewing, & editing of the manuscript, project administration, and funding acquisition. SP contributed to validation, formal analysis, investigation, writing, reviewing, & editing of the manuscript, and supervision. KL contributed to writing, reviewing, & editing of the manuscript and project administration. AK contributed to writing, reviewing, & editing of the manuscript, project administration, and funding acquisition.

Corresponding author

Correspondence to Aicha Boujnah.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 161 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujnah, A., Boubaker, A., Pecqueur, S. et al. An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN). J Mater Sci: Mater Electron 33, 27132–27146 (2022). https://doi.org/10.1007/s10854-022-09376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09376-2

Navigation