Skip to main content
Log in

Discrimination of binary mixture of toxic gases using ZnO nanowires-based E-nose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the utilization of ZnO nanowires (NWs)-based e-nose towards successful discrimination of binary gaseous mixture comprising H2S and NO2 gases. In particular, analysis of individual components in the binary mixture of gases has been carried out using different pattern recognition algorithms (PRA) or models. Of these, principal component analysis (PCA) indicated a successful discrimination of the gases. The maximum variance of three principal components were found to be 95.89, 3.53, and 0.56%, respectively. To cross validate the results, hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) studies have also been performed. Herein, by estimating the probability of the classes, an accurate prediction of the gases with minimal misclassification was achieved. Thus, using sequential application of the three basic PRAs on the data repository, a successful discrimination of the individual component of the binary mixture of gases was accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Lin, Z. Zeng, R. Xu, W. Liang, Y. Guo, X. Huo, Sci. Total Environ. 803, 150016 (2022)

    Article  CAS  Google Scholar 

  2. N.S. Ramgir, A. Pathak, K.R. Sinju, B. Bhangare, A.K. Debnath, K.P. Muthe, in Recent Advances in Thin Film Research, ed. S. Kumar, D K. Aswal, (Springer, 2020), pp. 625–663

  3. N.S. Ramgir, K.R. Sinju, B.B. Bhangare, A.K. Debnath, J. Mater. Nanosci. 9(2), 79–90 (2022)

    CAS  Google Scholar 

  4. X. Kang, N. Deng, Z. Yan, Y. Pan, W. Sun, Y. Zhang, Mater. Sci. Semicond. Proc. 138, 106246 (2022)

    Article  CAS  Google Scholar 

  5. J. Saha, P. Chouhan, Environ. Pollut. 266, 115250 (2020)

    Article  CAS  Google Scholar 

  6. B.B. Bhangare, K.R. Sinju, N.S. Ramgir, S. Gosavi, A.K. Debnath, Mater. Sci. Semicond. Proc. 47, 106706 (2022)

    Article  Google Scholar 

  7. R. Miiller, E. Lange, Sens. Actuators 9, 39–48 (1986)

    Article  Google Scholar 

  8. N.S. Ramgir, S.J. Patil, ZnO Nanowires: An Excellent Nanomaterial for Nanotechnology, Encyclopedia of Semiconductor Nanotechnology, January 2017, ca. p. 4210, ISBN: 1-58883-199-X.

  9. Y.H. Navale, S.T. Navale, M.A. Chougule, N.S. Ramgir, V.B. Patil, J. Mater. Sci. Mater. Elec. 1–14, 8 (2021)

    Google Scholar 

  10. K. R. Sinju, N. S. Ramgir, A. Pathak, A. K. Debnath, K.P. Muthe, in AIP Conference Proceedings, 03028 (2020) p. 2265

  11. K.R. Sinju, B. Bhangare, A. Pathak, S.J. Patil, N.S. Ramgir, A.K. Debnath, D.K. Aswal, Mater. Sci. Semicond. Proc. 137, 106235 (2022)

    Article  CAS  Google Scholar 

  12. N.S. Ramgir, P.K. Sharma, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sens. Actuators B 186, 718–726 (2013)

    Article  CAS  Google Scholar 

  13. N. Datta, N. Ramgir, M. Kaur, S.K. Ganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sens. Actuators B 166, 394–401 (2012)

    Article  Google Scholar 

  14. N.S. Ramgir, R. Datta, K. Avhad, R. Bhusari, M.M. Vedpathak, M. Meera, V.V. Katke, E. Ravisankar, A.K. Debnath, T.K. Saha, K.P. Muthe, S.C. Gadkari, BARC News Lett. 14–18, 5 (2017)

    Google Scholar 

  15. N.S. Ramgir, R. Bhusari, N.S. Rawat, S.J. Patil, A.K. Debnath, S.C. Gadkari, K.P. Muthe, Mater. Sci. Semicond. Proc. 106, 104770 (2020)

    Article  CAS  Google Scholar 

  16. W. McKinney, in Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference (2010), pp. 51–56.

  17. J.D. Hunter, Comput. Sci. Eng. 9, 90–95 (2007)

    Article  Google Scholar 

  18. D. Granato, J.S. Santos, G.B. Escher, B.L. Ferreira, R.M. Maggio, Trends Food Sci. Tech. 72, 83–90 (2018)

    Article  CAS  Google Scholar 

  19. T. Jolliffe, J. Cadima, Trans. R. Soc. A 374, 20150202 (2016)

    Google Scholar 

  20. M. Ghasemi-Varnamkhasti, M. Tohidi, P. Mishra, Z. Izadi, Postharvest Biol. Technol. 138, 134–139 (2018)

    Article  Google Scholar 

  21. A.M. Martinez, A.C. Kak, IEEE Trans. Pattern Anal. Mach. Intell. 23, 228–233 (2001)

    Article  Google Scholar 

  22. N.S. Ramgir, C.P. Goyal, P.K. Sharma, U.K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sens. Actuators B 188, 525–532 (2013)

    Article  CAS  Google Scholar 

  23. N. Datta, N.S. Ramgir, S. Kumar, P. Veerender, M. Kaur, S. Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sens. Actuators B 202, 1270–1280 (2014)

    Article  CAS  Google Scholar 

  24. B. Bhangare, K.R. Sinju, N.S. Ramgir, S. Gosavi, A.K. Debnath, Mater. Sci. Semicond. Proc. 147, 106706 (2022)

    Article  CAS  Google Scholar 

  25. C. Bourgeois, P. Dufour, J.C. Mutin, A. Steinbrunn, J. Mater. Sci. 17, 2298 (1982)

    Article  CAS  Google Scholar 

  26. S.K. Jha, R.D.S. Yadav, IEEE Sensors 11, 1 (2011)

    Article  Google Scholar 

  27. E. Ordukaya, B. Karlik, Food Qual. 9272404, 24 (2017)

    Google Scholar 

  28. P.S. Kumar, R. Pedada, J. Nayak, H.S. Behera, G.M.S. Pratyusha, V. Velugula, Comp. Intell. Data Mining 49, 651–666 (2022)

    Google Scholar 

Download references

Acknowledgements

KRS would like thank Council of Scientific and Industrial Research-University Grants Commission (CSIR-UGC) for the award of Senior Research Fellowship. BKB thanks CSIR for the award of Research Associateship (CSIR-RA).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KRS: Conceptualization; Data curation; Formal analysis, Original draft; Methodology; Software; BKB: Data curation, Formal analysis; AKD: Supervision; Resources; NSR: Conceptualization; Methodology; Formal Analysis, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Niranjan S. Ramgir.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal rights

Not applicable, the present research work does not involve any human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinju, K.R., Bhangare, B.K., Debnath, A.K. et al. Discrimination of binary mixture of toxic gases using ZnO nanowires-based E-nose. J Mater Sci: Mater Electron 34, 1562 (2023). https://doi.org/10.1007/s10854-023-10956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10956-z

Navigation