Skip to main content
Log in

Electrical characteristics of Al2O3/p-Si heterojunction diode and effects of radiation on the electrical properties of this diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The temperature dependence of the electrical parameters of the Au/α-Al2O3/p-Si/Al heterojunction diode and the variation of these parameters with radiation were investigated. It has been determined that the lnI–V curves of the diode have non-linear plots and this is due to the inhomogeneity in the potential barrier. The ideality factor (n), barrier height (Φb) and series resistance (Rs) values of the diode were calculated depending on the temperature. It was determined that n and Rs values decrease and Φb values increase with the increase in temperature. The voltage coefficients and standard deviation values are calculated using the [(1/n) − 1] − 1/2kT and Φb − 1/2kT graphs of heterojunction diode. The value of Richardson constant was calculated as A* = 7.64 A/K2 cm2 using conventional Richardson plot of ln(I0/T2) against 1/T. In addition, the effects of different X-ray irradiation doses on the I–V characteristics of Au/Al2O3/p-Si/Al heterojunction were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due [reason(s) why data are not publıc] but are available from the corresponding author on reasonable request.].

References

  1. A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys. 44, 302–347 (2020)

    Article  Google Scholar 

  2. Z. Çaldıran, L.B. Taşyürek, The role of molybdenum trioxide in the change of electrical properties of Cr/MoO3/n-Si heterojunction and electrical characterization of this device depending on temperature. Sens. Act. Phys. 328, 112765 (2021)

    Article  Google Scholar 

  3. İ Gümüş, Ö. Metin, M. Sevim, Ş Aydoğan, Analysis on the temperature dependent electrical properties of Cr/Grapheneoxide-Fe3O4 nanocomposites/n-Si heterojunction device. Diam. Relat. Mat. 108, 107933 (2020)

    Article  Google Scholar 

  4. E.H. Rhoderick, R.H. Williams, Metal semiconductor contacts, 2nd edn. (Oxford University Press, 1988)

    Google Scholar 

  5. H. Panitchakan, P. Limsuwan, Characterization of aluminum oxide films deposited on Al2O3-TiC by RF diode sputtering. Proced. Engine. 32, 902–908 (2012)

    Article  CAS  Google Scholar 

  6. Ç.Ş Güçlü, A.F. Özdemir, A. Karabulut, A. Kökçe, Ş Altındal, Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mat. Sci. Semicond. Proces. 89, 26–31 (2019)

    Article  Google Scholar 

  7. E.O. Filatova, A.S. Konashuk, Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J. Phys. Chem. C. 119, 20755–20761 (2015)

    Article  CAS  Google Scholar 

  8. G. Qianqian, L. Fei, T. Qiulin, Z. Tianhao, X. Jijun, Z. Wendong, Al2O3-based a-IGZO Schottky diodes for temperature sensing. Sensors 19(2), 224 (2019)

    Article  Google Scholar 

  9. K. Bhatt, S. Kumar, C.C. Tripathi, Highly sensitive Al/Al2O3/Ag MIM diode for energy harvesting applications. AEU Internat. J. Elect. Commun. 111, 152925 (2019)

    Article  Google Scholar 

  10. J.-A. Jeong, H.-K. Kim, Al2O3/Ag/Al2O3 multilayer thin film passivation prepared by plasma damage-free linear facing target sputtering for organic light emitting diodes. Th. Sol. Film. 547, 63–67 (2013)

    Article  CAS  Google Scholar 

  11. Y. Yu, I. Akihiko, T. Rong, G. Takashi, Orientation control of alpha-Al2O3 films prepared by laser chemical vapor deposition using a diode laser. J. Ceram. Soc. Jap. 118(1377), 366–369 (2010)

    Article  Google Scholar 

  12. R. Benabderrahmane, M. Kanoun, N. Bruyant, H. Achard, C. Baraduc, A. Bsiesy, Electrical study of NiFe/Al2O3/Si tunnel diodes for magnetic memories. Internat. Confer. Mıcroelect. ICM (2008). https://doi.org/10.1109/ICM.2008.5393832

    Article  Google Scholar 

  13. S. Okuyama, K. Umemoto, K. Okuyama, S. Ohshima, K. Matsushita, Pd/Ni–Al2O3–Al tunnel diode as high-concentration-hydrogen gas sensor. Jpn. J. Appl. Phys. 36, 1228 (1997)

    Article  CAS  Google Scholar 

  14. S. Shi, Y. Wang, X. Wu, Z. Yang, X. Li, J. Yang, F. CaO, Improving the barrier inhomogeneity of 4H-SiC Schottky diodes by inserting Al2O3 interface layer. Sol. Stat. Elect. 180, 107992 (2021)

    Article  CAS  Google Scholar 

  15. M.S.P. Reddy, J.-H. Lee, J.-S. Jang, Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures. Electron. Mater. Lett. 10(2), 411–416 (2014)

    Article  CAS  Google Scholar 

  16. A.R. Deniz, Z. Çaldıran, Heterojunction diode application of yttrium ıron oxide (Y3Fe5O12). J. Mater. Sci: Mater. Electron. 33(8), 173–182 (2022)

    Google Scholar 

  17. R.C.R. Santos, E. Longhinotti, V.N. Freire, R.B. Reimberg, E.W.S. Caetano, Elucidating the high-κ insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem. Phys. Lett. 637, 172–176 (2015)

    Article  CAS  Google Scholar 

  18. J. Osvald, L. Hrubcin, B. Zatko, Temperature dependence of electrical behaviour of inhomogeneous Ni/Au/ 4H–SiC Schottky diodes. Mat. Sci. Semicon. Proces. 140, 106413 (2022)

    Article  CAS  Google Scholar 

  19. S. Duman, B. Gürbulak, M. Şata, Analysis of temperature dependent current-voltage characteristics of Sn/p-GaTe/In Schottky diode. Optc. Mat. 125, 112138 (2022)

    Article  CAS  Google Scholar 

  20. A. Türüt, A. Karabulut, H. Efeoğlu, Effect of the Al2O3 interfacial layer thickness on the measurement temperature-induced I–V characteristics in Au/Ti/Al2O3/n-GaAs structures. J. Mater. Sci: Mater. Electron. 32, 22680–22688 (2021)

    Google Scholar 

  21. Z. Çaldıran, Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure. J. Alloy. Comp. 865, 158856 (2021)

    Article  Google Scholar 

  22. A.R. Deniz, A.İ Taş, Z. Çaldıran, Ü. İncekara, M. Biber, Ş Aydoğan, A. Türüt, Effects of PEDOT: PSS and crystal violet interface layers on current-voltage performance of Schottky barrier diodes as a function of temperature and variation of diode capacitance with frequency. Cur. App. Phiys. 39, 173–182 (2022)

    Article  Google Scholar 

  23. A. Sarılmaz, F. Ozel, A. Karabulut, İ Orak, M.A. Şahinkaya, The effects of temperature and frequency changes on the electrical characteristics of hot-injected Cu2MnSnS4 chalcogenide-based heterojunction. Physc. B: Phys. Cond. Mat. 580, 411821 (2020)

    Article  Google Scholar 

  24. H. Ezgin, E. Demir, A. Acar, M. Özer, Investigation of temperature-dependent electrical parameters in a Schottky barrier diode with multi-walled carbon nanotube (MWCNT) interface. Mat. Sci. Semicon. Proces. 147, 106672 (2022)

    Article  CAS  Google Scholar 

  25. Ö. Sevgili, İ Orak, The investigation of current condition mechanism of Al/Y2O3/p-Si Schottky barrier diodes in wide range temperature and illuminate. Microelect. Reliabil. 117, 114040 (2021)

    Article  CAS  Google Scholar 

  26. T. Güzel, A.K. Bilgili, M. Özer, Investigation of inhomogeneous barrier height for Au/n-type 6HSiC Schottky diodes in a wide temperature range. Superlat. Microstruc. 124, 30–40 (2018)

    Article  Google Scholar 

  27. A.A. Kumar, L.D. Rao, V.R. Reddy, C.-J. Choi, Analysis of electrical characteristics of Er/p-InP Schottky diode at high temperature range. Cur. Appl. Phys. 13, 975–980 (2013)

    Article  Google Scholar 

  28. S. Mahato, J. Puigdollers, Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer. Phys. B Phys. Cond. Mat. 530, 327–335 (2018)

    Article  CAS  Google Scholar 

  29. S. Oussalah, W. Filali, E. Garoudja, B. Zatout, F. Lekoui, R. Amrani, N. Sengouga, M. Henini, Analysis of I–V-T characteristics of Be-doped AlGaAs Schottky diodes grown on (100) GaAs substrates by molecular beam epitaxy. Microelect. Jour. 122, 105409 (2022)

    Article  CAS  Google Scholar 

  30. N. Ozawa, T. Makino, H. Kato, M. Ogura, Y. Kato, D. Takeuchi, H. Okushi, S. Yamasaki, Temperature dependence of electrical characteristics for diamond Schottkypn diode in forward bias. Dia. Relat. Mat. 85, 4–52 (2018)

    Google Scholar 

  31. A. Dey, R. Jana, J. Dhar, P. Das, P.P. Ray, Gaussian distribution of inhomogeneous barrier height of Al/ZnS/ITO Schottky barrier diodes. Mat. Tod. Proce. 5, 9958–9964 (2018)

    Article  CAS  Google Scholar 

  32. A.R. Kumar, A.S. Kumar, K.K. Sharma, S. Chand, Analysis of anomalous transport mechanism across the interface of Ag/p-Si Schottky diode in wide temperature range. Superlat. Microstr. 128, 373–381 (2019)

    Article  CAS  Google Scholar 

  33. M. Gark, A. Kumar, H. Sun, C.-H. Liao, X. Li, R. Singh, Temperature dependent electrical studies on Cu/AlGaN/GaN Schottky barrier diodes with its microstructural characterization. J. Alloy. Comp. 806, 852–857 (2019)

    Article  Google Scholar 

  34. P.R. Reddy, V. Janardhanam, K.-H. Shim, V. Rajagopal Reddy, S.-N. Lee, S.-J. Park, C.-J. Choi, Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode. Vacuum 171, 109012 (2020)

    Article  CAS  Google Scholar 

  35. Z. Khurelbaatar, M.-S. Kang, K.-H. Shim, H.-J. Yun, J. Lee, H. Hong, S.-Y. Chang, S.-N. Lee, C.-J. Choi, Temperature dependent currentevoltage characteristics of Au/n-type Ge Schottky barrier diodes with graphene interlayer. J. Alloy. Comp. 650, 658–663 (2015)

    Article  CAS  Google Scholar 

  36. A. Venter, D.M. Murape, J.R. Botha, F.D. Auret, Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements. Th. Sol. Film. 574, 32–37 (2015)

    Article  CAS  Google Scholar 

  37. M. Gülnahar, Temperature dependence of current-and capacitance–voltage characteristics of an Au/4H-SiC Schottky diode. Superlat. Microstruc. 76, 394–412 (2014)

    Article  Google Scholar 

  38. Ö.F. Yüksel, N. Tuğluoğlu, B. Gülveren, H. Şafak, B. Kuş, Electrical properties of Au/perylene-monoimide/p-Si Schottky diode. J. Alloy. Comp. 577, 30–36 (2013)

    Article  Google Scholar 

  39. S. Krishnan, G. Sanjeev, M. Pattabi, Electron irradiation effects on the Schottky diode characteristics of p-Si. Nuc. Inst. Meth. Phys. Researc. 266, 621–624 (2008)

    Article  CAS  Google Scholar 

  40. Z. Çaldıran, A.R. Deniz, Y. Şahin, Ö. Metin, K. Meral, Ş Aydoğan, The electrical characteristic of the Fe3O4/Si junctions. J. Alloy. Comp. 552, 437–442 (2013)

    Article  Google Scholar 

  41. K. Arshak, O. Karastyrska, Thick film oxide diode structures for personal dosimetry application. Sensor. Act. 113, 319–323 (2004)

    Article  CAS  Google Scholar 

  42. M.A. Salari, M. Sağlam, B. Güzeldir, The protection from the effects of gamma rays of metal-semiconductor diodes by means of ZnO thin interface layer. Rad. Phys. Chem. 165, 108416 (2019)

    Article  CAS  Google Scholar 

  43. V. Gnatyuk, In/CdTe/Au p–n junction-diode X/γ-ray detectors formed by frontside laser irradiation doping. Nuc. Inst. Meth. Phys. Researc. 1029, 166397 (2022)

    Article  CAS  Google Scholar 

  44. M.A. Salari, M. Sağlam, A. Baltakesmez, B. Güzeldir, Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. J. Radio. Nuc. Chem. 319, 667–668 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed from Hakkari University Scientific Research Projects budget numbered “FM22BAP2.”

Author information

Authors and Affiliations

Authors

Contributions

In this study, fabrication process of the diode, performing electrical measurements, and analyzing these measurements were carried out by Assistance Prof. Dr. ARD, Assistance Prof. Dr. ZÇ and Dr. LBT.

Corresponding author

Correspondence to Ali Rıza Deniz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethical approval

The Corresponding Author declares that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz, A.R., Çaldıran, Z. & Taşyürek, L.B. Electrical characteristics of Al2O3/p-Si heterojunction diode and effects of radiation on the electrical properties of this diode. J Mater Sci: Mater Electron 33, 26954–26965 (2022). https://doi.org/10.1007/s10854-022-09359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09359-3

Navigation