Skip to main content
Log in

Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, RF-magnetron sputtered ZnO thin film as an interlayer was used to improve radiation tolerance of the Schottky diodes. The structural and optical measurements showed that the ZnO thin films have hexagonal crystal structure with preferential c-axis orientation, 20.39 nm grain sizes and 3.15 eV bandgap. The electrical parameters such as ideality factor, barrier height and series resistance of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes were calculated before and after electron radiation at 25, 50 and 75 gray doses. Deviation values of the parameters showed that the ZnO as an interlayer caused to improved radiation tolerance of the diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Umezawa H, Shikata S, Funaki T (2014) Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys 53:570–576

    Google Scholar 

  2. Güzeldir B, Sağlam M, Ateş A (2010) Analysis of the electrical characteristics of Zn/ZnSe/n-Si/Au–Sb structure fabricated using SILAR method as a function of temperature. J Alloys Compd 506:388–394

    Article  CAS  Google Scholar 

  3. Akay D, Efil E, Kaymak N, Orhan E, Ocak SB (2018) Study of frequency dependent characterization: applied gamma-ray irradiation on metal-polymer nanostructure. Radiat Phys Chem 318:1409–1417

    CAS  Google Scholar 

  4. Aydogan Ş, İncekara Ü, Türüt A (2011) The effects of 12 MeV electron irradiation on the electrical characteristics of the Au/Aniline blue/p-Si/Al device. Microelectron Reliab 51(12):1–7

    Article  CAS  Google Scholar 

  5. Uslu H, Yıldırım M, Altındal Ş, Durmuş P (2012) The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature. Radiat Phys Chem 81:362–369

    Article  CAS  Google Scholar 

  6. Venkatesan S, Ngo E, Khatiwada D, Zhang C, Qiao Q (2015) Enhanced lifetime of polymer solar cells by surface passivation of metal oxide buffer layers. ACS Appl Mater Interfaces 7(29):16093–16100

    Article  CAS  PubMed  Google Scholar 

  7. Dong H, Pang S, Zhang Y, Chen D, Zhu W, Xi H, Chang J, Zhang J, Zhang C, Hao Y (2018) Improving electron extraction ability and device stability of perovskite solar cells using a compatible PCBM/AZO electron transporting bilayer. Nanomaterials 720:1–10

    Google Scholar 

  8. Liu X, Liu C, Sun R, Liu K, Zhang Y, Wang HQ, Fang J, Yang C (2015) Improved device performance of polymer solar cells by using a thin light-harvesting-complex modified ZnO film as the cathode interlayer. ACS Appl Mater Interfaces 7(34):18904–18912

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, He XL, Wang WB, Zhu Q, Xuan WP, Jin H, Dong SR, Wang DM, Luo JK (2013) Transparent surface acoustic wave devices on ZnO/glass using Al-doped ZnO as the electrode. IEEE Electron Device Lett 34:1319–1321

    Article  CAS  Google Scholar 

  10. Hsiao CC, Yu SY (2012) Improved response of ZnO films for pyroelectric devices. Sensors 12:17007–17022

    Article  CAS  PubMed  Google Scholar 

  11. Sharma V, Kumar P, Kumar A, Surbhi Asokan K, Sachdev K (2017) High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Sol Energy Mater Sol Cells 169:122–131

    Article  CAS  Google Scholar 

  12. Baltakesmez A, Tekmen S, Tüzemen S (2011) ZnO homojunction white light-emitting diodes. J Appl Phys 110:1–7

    Article  CAS  Google Scholar 

  13. Firdous S (2018) Development and imaging of zinc oxide nanorods as a photosensitizer for the diagnosis and treatment of cancer using lasers. Laser Phys Lett 15:1–8

    Google Scholar 

  14. Davydova M, Laposa A, Smarhak J, Kromka A, Neykova N, Nahlik J, Kroutil J, Drahokoupil J, Voves J (2018) Gas-sensing behaviour of ZnO/diamond nanostructures. Beilstein J Nanotechnol 9:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baltakesmez A, Biber M, Tüzemen S (2018) Inverted planar perovskite solar cells based on Al doped ZnO substrate. J Radiat Res Appl Sci 112:124–129

    Article  CAS  Google Scholar 

  16. Alshammari FH, Nayak PK, Wang Z, Alshareef HN (2016) Enhanced ZnO thin-film transistor performance using bilayer gate dielectrics. ACS Appl Mater Interfaces 8(35):22751–22755

    Article  CAS  PubMed  Google Scholar 

  17. Maji TK, Bagchi D, Kar P, Karmakar D, Pal SK (2017) Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: ultrafast spectroscopy and computational studies. J Photochem Photobiol A 332:391–398

    Article  CAS  Google Scholar 

  18. Su YQ, Zhu Y, Yong D, Chen M, Su L, Chen A, Wu Y, Pan B, Tang Z (2016) Enhanced exciton binding energy of ZnO by long-distance perturbation of doped be atoms. J Phys Chem Lett 7:1484–1489

    Article  CAS  PubMed  Google Scholar 

  19. Dai S, Dunn ML, Park HS (2010) Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials. Nanotechnology 21:44507–44515

    Google Scholar 

  20. Raji R, Gopchandran KG (2017) ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J Sci Adv Mater Dev 2:51–58

    Google Scholar 

  21. Viespe C, Miu D (2017) Surface acoustic wave sensor with Pd/ZnO bilayer structure for room temperature hydrogen detection. Sensors 17:1–9

    Article  CAS  Google Scholar 

  22. Tang C, Jiang C, Lu W, Song J (2013) Nonlinear length dependent electrical resistance of a single crystal zinc oxide micro/nanobelt. Phys Chem Chem Phys 21:1–6

    Google Scholar 

  23. Zhang KX, Yao CB, Wen X, Li QH, Sun WJ (2018) Ultrafast nonlinear optical properties and carrier dynamics of silver nanoparticle-decorated ZnO nanowires. RSC Adv 8:26133–26143

    Article  CAS  Google Scholar 

  24. Wu X, Lee J, Varshney V, Wohlwend JL, Roy AK, Luo T (2016) Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics a comparative study with gallium nitride. Sci Rep 22504:1–10

    Google Scholar 

  25. Sahal M, Mari B, Mollar M, Manjon FJ (2010) Zn1-xMgxO thin films deposited by spray pyrolysis. Phys Status Solidi C 79:2306–2310

    Article  CAS  Google Scholar 

  26. Farzana R, Rajarao R, Behera PR, Hassan K, Sahajwalla V (2018) Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties. Nanomaterials 717:1–12

    Google Scholar 

  27. Zhao X, Chen L, HeY Liu J, Peng W, Huang Z, Qi X, PanZ Zhang W, Zhang Z, Ouyang X (2016) Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor. Appl Phys Lett 108:1–4

    Google Scholar 

  28. Koike K, Aoki T, Fujimoto R, Sasa S, Yano M, Gonda S, Ishigami R, Kume K (2012) Radiation hardness of single-crystalline zinc oxide films. Phys Stat Solidi 7:1577–1579

    Google Scholar 

  29. Samarin SN, Saramad S (2018) Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes. J Instrum 13(05):1–12

    Article  Google Scholar 

  30. Vincke H, Theis C, Roesler S (2011) Induced radioactivity in and around high-energy particle accelerators. Radiat Prot Dosim 146:434–439

    Article  CAS  Google Scholar 

  31. Lv J, Li C, Liu Y (2016) Oxygen-deficient defects facilitate H radiation resistance in ZnO. Phys Stat Solidi B 254:1–5

    Google Scholar 

  32. Angub MCM, Vergara CJT, Husay HAF, Salvador AA, Empizo MJF, Kawano K, Minami Y, Shimizu T, Sarukura N, Somintac AS (2018) Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors. J Lumin 203:427–435

    Article  CAS  Google Scholar 

  33. Sahare PD, Kumar S, Singh F (2018) n-ZnO/p-Si heterojunction nanodiodes based sensor for monitoring UV radiation. Sens Actuators A 279:351–360

    Article  CAS  Google Scholar 

  34. Narita S, Endo H, Chiba T, Sakemi Y, Itoh M, Yoshida H (2014) Characteristics of ZnO Schottky photodiode and effects of high-energy proton irradiation. Phys Stat Solidi A 211:570–573

    Article  CAS  Google Scholar 

  35. Su BY, Su YK, Tseng ZL, Shih MF, Cheng CY, Wu TH, Wu CS, Yeh JJ, Ho PY, Juang YD, Chu SY (2011) Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics. J Electrochem Soc 158:267–270

    Article  CAS  Google Scholar 

  36. Deshpande VP, Sartale SD, Vyas AN, Ubale AU (2017) Temperature dependent properties of spray deposited nanostructured ZnO thin films. Int J Mater Chem 7(2):36–46

    CAS  Google Scholar 

  37. Bachari EM, Baud G, Ben AS, Jacquet M (1999) Structural and optical properties of sputtered ZnO films. Thin Solid Films 348(1):165–172

    Article  CAS  Google Scholar 

  38. Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  39. Sze SM (1981) Physics of semiconductor devices. Wiley Press, New York

    Google Scholar 

  40. Krishnan S, Sanjeev G, Pattabi M (2008) Electron irradiation effects on the Schottky diode characteristics of p-Si. B: Beam Interact Mater Atoms 266(4):621–624

    CAS  Google Scholar 

  41. Karataş Ş, Türüt A (2006) Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60 Co γ-ray source. Nucl Instrum Methods Phys Res Sect A 566:584–589

    Article  CAS  Google Scholar 

  42. Singh R, Arora SK, Kanjilal D (2001) Swift heavy ion irradiation induced modification of electrical characteristics of Au/n-Si Schottky barrier diode. Mater Sci Semicond Process 4(5):425–432

    Article  CAS  Google Scholar 

  43. Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5055

    Article  CAS  Google Scholar 

  44. Karadeniz S (2007) 60 Co γ-ray irradiation effects on dielectric characteristics of tin oxide films of different thicknesses on n-type Si (1 1 1) substrates. Nucl Instrum Methods Phys Res Sect B 260:571–578

    Article  CAS  Google Scholar 

  45. Akay D, Karadeniz S, Birkan A, Ocak SB (2018) Effect of gamma-ray irradiation on the electrical characteristics of Al/C24H12/p-Si nano-structure. Phys Scr 93:1–5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to Yılmaz Şahin from Atatürk University for help in exposing electron irradiation measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Güzeldir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, M.A., Sağlam, M., Baltakesmez, A. et al. Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. J Radioanal Nucl Chem 319, 667–678 (2019). https://doi.org/10.1007/s10967-018-06401-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-06401-9

Keywords

Navigation