Skip to main content
Log in

Structural, morphological, and electrochemical investigation of Mn0.3Co0.2Zn0.5Fe2O4-polyaniline nanocomposite for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present research deals in preparing Mn0.3Co0.2Zn0.5Fe2O4 (spinel ferrite) by sol–gel procedure, polyaniline (PANI) by chemical oxidative method, and Mn0.3Co0.2Zn0.5Fe2O4-PANI nanocomposite by physical blending method. X-ray diffraction (XRD) study affirms the formation of Mn0.3Co0.2Zn0.5Fe2O4-PANI nanocomposite owing to the appearance of two different types of peaks: sharp Mn0.3Co0.2Zn0.5Fe2O4 peaks, and broader PANI peaks. Fourier transform infrared spectroscopy (FTIR) of Mn0.3Co0.2Zn0.5Fe2O4-PANI nanocomposite shows all characteristic vibrational bands, which are observed in the Mn0.3Co0.2Zn0.5Fe2O4 and PANI spectra. Field emission scanning electron microscopy (FESEM) micrographs have been employed for measuring the average particle size by using ImageJ software. The encapsulation of the synthesized ferrite nanoparticle with the PANI matrix is exhibited by the FESEM micrograph of Mn0.3Co0.2Zn0.5Fe2O4-PANI nanocomposite. The electrochemical activity of the novel Mn0.3Co0.2Zn0.5Fe2O4-PANI nanocomposite is manifested to be higher as compared to their counterparts on account of synergistic impact, continual movement of electrons toward the electrode, and multiple redox reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Research data policy and data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. S.A. Al Kiey, R. Ramadan, M.M. El-Masry, Appl. Phys. A 128, 473 (2022)

    Article  CAS  Google Scholar 

  2. P. Xiong, J. Zhu, X. Wang, J. Power Sour. 294, 31–50 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.062

    Article  CAS  Google Scholar 

  3. B.K. Roy, I. Tahmid, T.U. Rashid, J. Mater. Chem. A 9, 17592–17642 (2021). https://doi.org/10.1039/D1TA02997E

    Article  CAS  Google Scholar 

  4. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, A.C.S. Appl, Mater. Interfaces 5, 2188–2196 (2013). https://doi.org/10.1021/am400012h

    Article  CAS  Google Scholar 

  5. P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won, S.C. Jun, Chem. Eng. J. 387, 122982 (2020). https://doi.org/10.1016/j.cej.2019.122982

    Article  CAS  Google Scholar 

  6. G. Singh, S. Chandra, J. Electroanal. Chem. 874, 114491 (2020). https://doi.org/10.1016/j.jelechem.2020.114491

    Article  CAS  Google Scholar 

  7. M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Des. 186, 108199 (2020). https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  8. N. Arsalani, A.G. Tabrizi, L.S. Ghadimi, J. Mater. Sci. Mater. Electron. 29, 6077–6085 (2018). https://doi.org/10.1007/s10854-018-8582-6

    Article  CAS  Google Scholar 

  9. S. Liu, L. Hu, X. Xu, A.A. Al-Ghamdi, X. Fang, Small 11, 4267–4283 (2015). https://doi.org/10.1002/smll.201500315

    Article  CAS  Google Scholar 

  10. H. Mahajan, S.K. Godara, A.K. Srivastava, J. Alloys Compd. 896, 162966 (2022). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  CAS  Google Scholar 

  11. V. Verma, M. Kaur, J.M. Greneche, Cer. Int. 45, 10865–10875 (2019). https://doi.org/10.1016/j.ceramint.2019.02.164

    Article  CAS  Google Scholar 

  12. N. Murali, S.J. Margarette, G.P. Kumar, B. Sailaja, S.Y. Mulushoa, P. Himakar, B.K. Babu, V. Veeraiah, Phys. B: Condens. Matter 522, 1–6 (2017). https://doi.org/10.1016/j.physb.2017.07.043

    Article  CAS  Google Scholar 

  13. A. Mohammadi, S.J. Peighambardoust, A.A. Entezami, N. Arsalani, J. Mater. Sci. Mater. Electron. 28, 5776–5787 (2017). https://doi.org/10.1007/s10854-016-6248-9

    Article  CAS  Google Scholar 

  14. A. Khosrozadeh, M.A. Darabi, Q. Wang, M. Xing, J. Mater. Chem. A 5, 7933–7943 (2017). https://doi.org/10.1039/C7TA00591A

    Article  CAS  Google Scholar 

  15. B. Qiu, J. Wang, Z. Li, X. Wang, X. Li, Polymers 12, 310 (2020). https://doi.org/10.3390/polym12020310

    Article  CAS  Google Scholar 

  16. K.V. Sankar, R.K. Selvan, RSC Adv. 4, 17555–17566 (2014). https://doi.org/10.1039/C3RA47681B

    Article  CAS  Google Scholar 

  17. M.O. Akharame, O.S. Fatoki, B.O. Opeolu, D.I. Olorunfemi, O.U. Oputu, Polym. Plast. Technol. Eng. 57, 1801–1827 (2018). https://doi.org/10.1080/03602559.2018.1434666

    Article  CAS  Google Scholar 

  18. S.V. Bhandare, R. Kumar, A.V. Anupama, M. Mishra, R.V. Kumar, V.M. Jali, B. Sahoo, Mater. Chem. Phys. 251, 123081 (2020). https://doi.org/10.1016/j.matchemphys.2020.123081

    Article  CAS  Google Scholar 

  19. M. Khairy, M.E. Gouda, J. Adv. Res. 6, 555–562 (2015). https://doi.org/10.1016/j.jare.2014.01.009

    Article  CAS  Google Scholar 

  20. M. Saini, R. Shukla, A. Kumar, J. Magn. Magn. Mater. 491, 165549 (2019). https://doi.org/10.1016/j.jmmm.2019.165549

    Article  CAS  Google Scholar 

  21. R. Bolagam, R. Boddula, P. Srinivasan, J. Catal. 2014, 1–5 (2014). https://doi.org/10.1155/2014/984730

    Article  CAS  Google Scholar 

  22. Z. Jiao, Z. Yao, J. Zhou, K. Qian, Y. Lei, B. Wei, W. Chen, Ceram. Int. 46, 25405–25414 (2020). https://doi.org/10.1016/j.ceramint.2020.07.010

    Article  CAS  Google Scholar 

  23. A.M.A. Henaish, B.I. Salem, T.M. Meaz, Y.A. Alibwaini, A.W. Ajlouni, O.M. Hemeda, E.A. Arrasheed, Opt. Mater. 119, 111397 (2021). https://doi.org/10.1016/j.optmat.2021.111397

    Article  CAS  Google Scholar 

  24. A. Faraz, M. Saqib, N.M. Ahmad, F.U. Rehman, A. Maqsood, M. Usman, A. Mumtaz, M.A. Hassan, J. Supercond. Nov. Magn. 25, 91–100 (2012). https://doi.org/10.1007/s10948-011-1212-7

    Article  CAS  Google Scholar 

  25. M.A. Mousa, M. Khairy, M. Shehab, J. Solid State Electrochem. 21, 995–1005 (2017). https://doi.org/10.1007/s10008-016-3446-6

    Article  CAS  Google Scholar 

  26. K.V. Sankar, R.K. Selvan, J. Power Sour. 275, 399–407 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.183

    Article  CAS  Google Scholar 

  27. N. Dong, M. Zhong, P. Fei, Z. Lei, B. Su, J. Alloys Compd. 660, 382–386 (2016). https://doi.org/10.1016/j.jallcom.2015.11.175

    Article  CAS  Google Scholar 

  28. S.S. Hirthna, Ceram. Int. 43, 15447–15453 (2017). https://doi.org/10.1016/j.ceramint.2017.08.090

    Article  CAS  Google Scholar 

  29. W. Wang, S.P. Gumfekar, Q. Jiao, B. Zhao, J. Mater. Chem. C 1, 2851–2859 (2013). https://doi.org/10.1039/C3TC00757J

    Article  CAS  Google Scholar 

  30. A.H.A. Aziz, T.S. Jamil, M.S. Shalaby, A.M. Shaban, E.R. Souaya, N.A.A. Ghany, Int. J. Ind. Chem. 10, 175–191 (2019). https://doi.org/10.1007/s40090-019-0182-7

    Article  CAS  Google Scholar 

  31. T. Brousse, B. Daniel, J. Electrochem. Soc. 162, 5185–5189 (2015). https://doi.org/10.1149/2.0201505jes

    Article  CAS  Google Scholar 

  32. E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, RSC Adv. 5, 66657–66666 (2015). https://doi.org/10.1039/C5RA11239G

    Article  CAS  Google Scholar 

  33. G. Jiang, M. Zhang, X. Li, H. Gao, RSC Adv. 5, 69365–69370 (2015). https://doi.org/10.1039/C5RA11960J

    Article  CAS  Google Scholar 

  34. B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, A. Sakunthala, Appl. Phys. A 124, 1–12 (2018). https://doi.org/10.1007/s00339-018-1936-3

    Article  CAS  Google Scholar 

  35. S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, N.M. Huang, RSC Adv. 5, 14010–14019 (2015). https://doi.org/10.1039/C4RA16776G

    Article  CAS  Google Scholar 

  36. D. Yan, Y. Li, Y. Liu, R. Zhuo, B. Geng, Z. Wu, J. Wang, P. Ren, P. Yan, Electrochim. Acta 169, 317–325 (2015). https://doi.org/10.1016/j.electacta.2015.04.078

    Article  CAS  Google Scholar 

  37. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21, 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058

    Article  CAS  Google Scholar 

  38. Y.F. Yuan, X.H. Xia, J.B. Wu, J.L. Yang, Y.B. Chen, S.Y. Guo, Electrochim. Acta 56, 2627–2632 (2011). https://doi.org/10.1016/j.electacta.2010.12.001

    Article  CAS  Google Scholar 

  39. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, J.P. Tu, J. Power Sources 259, 98–105 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.088

    Article  CAS  Google Scholar 

  40. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P. Patil, S.S. Kolekar, RSC Adv. 5, 45935–45942 (2015). https://doi.org/10.1039/C5RA07588B

    Article  CAS  Google Scholar 

  41. B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Results Phys. 7, 345–353 (2017). https://doi.org/10.1016/j.rinp.2016.04.010

    Article  Google Scholar 

  42. S. Sahoo, S. Zhang, J.J. Shim, Electrochim. Acta 216, 386–396 (2016). https://doi.org/10.1016/j.electacta.2016.09.030

    Article  CAS  Google Scholar 

  43. Y.G. Wang, Z.D. Wang, Y.Y. Xia, Electrochim. Acta 50, 5641–5646 (2005). https://doi.org/10.1016/j.electacta.2005.03.042

    Article  CAS  Google Scholar 

  44. F.S. Omar, A. Numan, N. Duraisamy, M.M. Ramly, K. Ramesh, S. Ramesh, Electrochim. Acta 227, 41–48 (2017). https://doi.org/10.1016/j.electacta.2017.01.006

    Article  CAS  Google Scholar 

  45. S. Xu, X. Li, Z. Yang, T. Wang, W. Jiang, C. Yang, S. Wang, N. Hu, H. Wei, Y. Zhang, A.C.S. Appl, Mater. Interfaces 8, 27868–27876 (2016). https://doi.org/10.1021/acsami.6b10700

    Article  CAS  Google Scholar 

  46. V. Ganesh, S. Pitchumani, V. Lakshminarayanan, J. Power Sources 158, 1523–1532 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.090

    Article  CAS  Google Scholar 

  47. N. Li, D. Shan, H. Xue, Eur. Polym. J. 43, 2532–2539 (2007). https://doi.org/10.1016/j.eurpolymj.2007.01.048

    Article  CAS  Google Scholar 

  48. D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra, N.G. Renganathan, J. Power Sour. 190, 587–591 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.058

    Article  CAS  Google Scholar 

  49. Y. Li, H. Peng, G. Li, K. Chen, Eur. Polym. J. 48, 1406–1412 (2012). https://doi.org/10.1016/j.eurpolymj.2012.05.014

    Article  CAS  Google Scholar 

  50. W. Chen, X. Tao, D. Wei, H. Wang, Q. Yu, Y. Li, J. Mater. Sci. Mater. Electron. 27, 1357–1362 (2016). https://doi.org/10.1007/s10854-015-3897-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the support provided by the Central Instrumentation Facility, Lovely Professional University—Punjab, India through a research stay period.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HM: conceptualization, methodology, and writing-original draft. SK and AS: visualization and investigation of data and graphs. IM: performed CV, GCD, and EIS characterization. MT and SK: performed XRD and FTIR characterization. AK: performed FESEM and EDX characterization. AKS: supervision, writing-review, and editing.

Corresponding author

Correspondence to Ajeet Kumar Srivastava.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, H., Kumar, S., Sharma, A. et al. Structural, morphological, and electrochemical investigation of Mn0.3Co0.2Zn0.5Fe2O4-polyaniline nanocomposite for supercapacitor application. J Mater Sci: Mater Electron 33, 26590–26603 (2022). https://doi.org/10.1007/s10854-022-09335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09335-x

Navigation