Skip to main content
Log in

Selective xylene sensor employing europium-doped nickel oxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper describes the synthesis of pure NiO and (1 at%, 3 at%, and 5 at%) Eu-doped NiO via coprecipitation method and their application as xylene sensor. X-ray diffraction patterns revealed the cubic structure of all the samples. Interestingly, europium as a dopant modified the surface morphology of NiO which was confirmed through SEM images. Pure NiO exhibited micro-rod-like structure but doping with europium in NiO transformed the morphology into nanoparticles. Brunauer–Emmett–Teller results suggested that europium doping increases the surface area of nickel oxide and found to be maximum for 3 at% Eu-doped NiO. Raman data revealed the presence of nickel vacancies and numerous defects present in 3 at% Eu-doped NiO which was also confirmed with photoluminescence spectroscopy. Pure NiO exhibited a clear signal in the temperature range from 150 to 400 °C with optimum response at 250 °C. On the other hand, all the doped samples show an optimum response at 200 °C in the temperature range from 100 to 400 °C. The sensor device fabricated from 3 at% Eu-doped NiO shows selectivity towards xylene at 200 °C and was able to identify the traces of xylene at 10 ppm level. The improved sensing performance is attributed to various factors such as high surface area, presence of numerous defects, and nickel vacancies. Therefore, the sensing performance of sensor device suggested that the device can be relevant for acting as xylene sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. B.Y. Kim, J.H. Ahn, J.W. Yoon, C.S. Lee, Y.C. Kang, F. Abdel Hady, A.A. Wazzan, J.H. Lee, Highly selective xylene sensor based on NiO/NiMoO4 nanocomposite hierarchical spheres for indoor air monitoring. ACS Appl. Mater. Interfaces 8, 34603–34611 (2016)

    Article  CAS  Google Scholar 

  2. T.H. Kim, S.Y. Jeong, Y.K. Moon, J.H. Lee, Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sens. Actuators, B Chem. 301, 127140–127148 (2019)

    Article  CAS  Google Scholar 

  3. L. Du, X. Song, X. Liang, Y. Liu, M. Zhang, Formation of NiCo2O4 hierarchical tubular nanostructures for enhanced xylene sensing properties. Appl. Surf. Sci. 526, 146706–146714 (2020)

    Article  CAS  Google Scholar 

  4. L. Qiu, S. Zhang, J. Huang, C. Wang, R. Zhao, F. Qu, P. Wang, M. Yang, Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sens. Actuators, B Chem. 308, 127520–127527 (2020)

    Article  CAS  Google Scholar 

  5. H. Gao, J. Guo, Y. Li, C. Xie, X. Li, L. Liu, Y. Chen, P. Sun, F. Liu, X. Yan, F. Liu, G. Lu, Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators, B Chem. 284, 305–315 (2019)

    Article  CAS  Google Scholar 

  6. C. Feng, C. Wang, H. Zhang, X. Li, C. Wang, P. Cheng, J. Ma, P. Sun, Y. Gao, H. Zhang, Y. Sun, J. Zheng, G. Lu, Enhanced sensitive and selective xylene sensors using W-doped NiO nanotubes. Sens. Actuators, B Chem. 221, 1475–1482 (2015)

    Article  CAS  Google Scholar 

  7. T. Wang, S. Ma, L. Cheng, J. Luo, X. Jiang, W. Jin, Preparation of Yb-doped SnO2 hollow nanofibers with an enhanced ethanol gas sensing performance by electrospinning. Sens. Actuators, B Chem. 216, 212–220 (2015)

    Article  CAS  Google Scholar 

  8. M. Hjiri, F. Bahanan, M.S. Aida, L. El Mir, G. Neri, High performance CO gas sensor based on ZnO nanoparticles. J. Inorg. Organomet. Polym Mater. 30, 4063–4071 (2020)

    Article  CAS  Google Scholar 

  9. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 418, 9–15 (2002)

    Article  CAS  Google Scholar 

  10. A. Rydosz, The use of copper oxide thin films in gas-sensing applications. Coatings 8, 425–444 (2018)

    Article  Google Scholar 

  11. M. Stamataki, D. Tsamakis, N. Brilis, I. Fasaki, A. Giannoudakos, M. Kompitsas, Hydrogen gas sensors based on PLD grown NiO thin film structures. Phys. Status Solidi 205, 2064–2068 (2008)

    Article  CAS  Google Scholar 

  12. C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sensors 1, 131–136 (2016)

    Article  CAS  Google Scholar 

  13. H. Gao, Q. Yu, S. Zhang, T. Wang, P. Sun, H. Lu, F. Liu, X. Yan, F. Liu, X. Liang, Y. Gao, G. Lu, Nanosheet-assembled NiO microspheres modified by Sn2+ ions isovalent interstitial doping for xylene gas sensors. Sens. Actuators, B Chem. 269, 210–222 (2018)

    Article  CAS  Google Scholar 

  14. V. Gaur, A. Sharma, N. Verma, Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon 43, 3041–3053 (2005)

    Article  CAS  Google Scholar 

  15. J. Ma, J. Yang, L. Jiao, Y. Mao, T. Wang, X. Duan, J. Lian, W. Zheng, NiO nanomaterials: controlled fabrication, formation mechanism and the application in lithium-ion battery. Cryst Eng Comm 14, 453–459 (2012)

    Article  Google Scholar 

  16. P.M. Jahani, H.A. Javar, H. Mahmoudi-Moghaddam, A new electrochemical sensor based on Europium-doped NiO nanocomposite for detection of venlafaxine. Measurement 173, 108616–108624 (2021)

    Article  Google Scholar 

  17. T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: future perspectives. J. Alloy. Compd. 805, 267–294 (2019)

    Article  CAS  Google Scholar 

  18. S. Mishra, P. Yogi, P.R. Sagdeo, R. Kumar, Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing. Nanoscale Res. Lett. 13, 16–22 (2018)

    Article  Google Scholar 

  19. Y. Zhang, L. Zhao, H. Jia, P. Li, Study of the electroluminescence performance of NiO-based quantum dot light-emitting diodes: the effect of annealing atmosphere. Appl. Surf. Sci. 526, 146732–146738 (2020)

    Article  CAS  Google Scholar 

  20. X. Li, J.-F. Tan, Y.-E. Hu, X.-T. Huang, Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors. Mater. Res. Expr. 4, 045015–045034 (2017)

    Article  Google Scholar 

  21. C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α Fe2O3/NiO composites with a hollow structure for a gas sensor. Appl. Mater. Surf. 6, 12031–12037 (2014)

    Article  CAS  Google Scholar 

  22. H. Gao, D. Wei, P. Lin, C. Liu, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sens. Actuators, B Chem. 253, 1152–1162 (2017)

    Article  CAS  Google Scholar 

  23. H.-J. Kim, J.-W. Yoon, K.-I. Choi, H.W. Jang, A. Umar, J.-H. Lee, Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5, 7066–7073 (2013)

    Article  CAS  Google Scholar 

  24. F.I. Shaikh, L.P. Chikhale, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, Structural, optical and ethanol sensing properties of Dy-doped SnO2 nanoparticles. J. Electron. Mater. 47, 3817–3828 (2018)

    Article  CAS  Google Scholar 

  25. A.A. Ibrahim, S.W. Hwang, G.N. Dar, S.H. Kim, M. Abaker, S.G. Ansari, Synthesis and characterization of Gd-Doped ZnO nanopencils for acetone sensing application. Sci. Adv. Mater. 6, 1241–1246 (2015)

    Article  Google Scholar 

  26. K. Zhu, S. Ma, Y. Tie, Z. Qixian, W. Wang, S. Pei, X. Xu, Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures. J. Alloy. Compd. 792, 938–944 (2019)

    Article  CAS  Google Scholar 

  27. Y. Cao, W. Pan, Y. Zong, D. Jia, Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction. Sens. Actuators, B Chem. 138, 480–484 (2009)

    Article  CAS  Google Scholar 

  28. S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, J. Pant, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28–35 (2018)

    Article  CAS  Google Scholar 

  29. N. Zahmouli, M. Hjiri, S. Leonardi, L. El Mir, G. Neri, D. Iannazzo, C. Espro, M. Aida, High performance Gd-doped γ-Fe2O3 based acetone sensor. Mater. Sci. Semicond. Process. 116, 105154–105161 (2020)

    Article  CAS  Google Scholar 

  30. D. Dash, N. Panda, D. Sahu, Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles. Appl. Surf. Sci. 494, 666–674 (2019)

    Article  CAS  Google Scholar 

  31. Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei, Wang C Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram. Int. 42, 15881–15888 (2016)

    Article  CAS  Google Scholar 

  32. W. Chen, Y. Liu, Z. Qin, Y. Wu, S. Li, P. Ai, A single Eu-doped In2O3 nanobelt device for selective H2S detection. Sensors 15, 29950–29957 (2015)

    Article  CAS  Google Scholar 

  33. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63–75 (2003)

    Article  CAS  Google Scholar 

  34. R. Miao, W. Zeng, Q. Gao, SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gassensing properties. Appl. Surf. Sci. 384, 304–310 (2016)

    Article  CAS  Google Scholar 

  35. A. Kalam, A.S. Al-Shihri, A.G. Al-Sehemi, N. Awwad, G. Du, T. Ahmad, Effect of ph on solvothermal synthesis of Ni(OH)2 and NiO nano-architectures: Surface area studies, optical properties and adsorption studies. Superlattices Microstruct. 55, 83–97 (2013)

    Article  CAS  Google Scholar 

  36. Shailja, K.J. Singh, R.C. Singh, Highly sensitive and selective ethanol gas sensor based on Ga-doped NiO nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 11274–11290 (2021)

    CAS  Google Scholar 

  37. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/WO3 nanosheets for detection of ammonia. ACS Appl. Nano Mater. 4, 2594–2605 (2021)

    Article  CAS  Google Scholar 

  38. I. Manouchehri, S.A.O. AlShiaa, D. Mehrparparvar, M.I. Hamil, R. Moradian, Optical properties of zinc doped NiO thin films deposited by rf magnetron sputtering. Optik 127, 9400–9406 (2016)

    Article  CAS  Google Scholar 

  39. T. Kuo, S. Chen, W. Peng, Y. Lin, H. Lin, Influences of process parameters on texture and microstructure of NiO films. Thin Solid Films 519, 4940–4943 (2011)

    Article  CAS  Google Scholar 

  40. K. Anand, J. Kaur, R.C. Singh, R. Thangaraj, Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles. Mater. Sci. Semicond. Process. 39, 476–483 (2015)

    Article  CAS  Google Scholar 

  41. G.A. Jeffery, Elements of x-ray diffraction. J. Chem. Educ. (1957). https://doi.org/10.1021/ed034pA178

    Article  Google Scholar 

  42. A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Synthesis and characterization of europium-doped zinc oxide photocatalyst. J. Nanomater. 2014, 367529–367538 (2014)

    Article  Google Scholar 

  43. R. Lontio Fomekong, D. Lahem, M. Debliquy, S. Yunus, J. Lambi Ngolui, A. Delcorte, Ni0.9 Zn0.1O/ZnO nanocomposites prepared by malonate coprecipitation route for gas sensing. Sens. Actuators B: Chem. 231, 520–528 (2016)

    Article  CAS  Google Scholar 

  44. K.N. Patel, M. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S. Chaki, Structural and optical analysis of Fe doped NiO nanoparticles synthesized by chemical precipitation route. Mater. Res. Bull. 106, 187–196 (2018)

    Article  CAS  Google Scholar 

  45. N.J. Usharani, S.S. Bhattacharya, Effect of defect states in the optical and magnetic properties of nanocrystalline NiO synthesised in a single step by an aerosol process. Ceram. Int. 46, 5671 (2020)

    Article  CAS  Google Scholar 

  46. T. Pandiyarajan, R. Udayabhaskar, B. Karthikeyan, Role of Fe doping on structural and vibrational properties of ZnO nanostructures. Appl. Phys. A 107, 411–419 (2012)

    Article  CAS  Google Scholar 

  47. Z.Y. Jiang, K.R. Zhu, Z.-Q. Lin, S.-W. Jin, G. Li, Structure and raman scattering of Mg-doped ZnO nanoparticles prepared by sol-gel method. Rare Met. 37, 881–885 (2018)

    Article  CAS  Google Scholar 

  48. A. Manikandan, J. Judith Vijaya, L. John Kennedy, Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Phys E: Low-dimens Syst Nanostructures 49, 117–123 (2013)

    Article  CAS  Google Scholar 

  49. A.C. Gandhi, S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7, 231–242 (2017)

    Article  Google Scholar 

  50. R. Bhardwaj, A. Bharti, J.P. Singh, K.H. Chae, N. Goyal, Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures. Nanoscale Adv. 2, 4450–4463 (2020)

    Article  CAS  Google Scholar 

  51. R. Sharma, A.D. Acharya, S.B. Shrivastava, M.M. Patidar, M. Gangrade, T. Shripathi, V. Ganesan, Studies on the structure optical and electrical properties of Zn-doped NiO thin films grown by spray pyrolysis. Optik 127, 4661–4668 (2016)

    Article  CAS  Google Scholar 

  52. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoSe2 crystalline nanosheets for room-temperature ammonia sensing. ACS Appl. Nano Mater. 3, 9375–9384 (2020)

    Article  CAS  Google Scholar 

  53. S. Singh, S. Sharma, R.C. Singh, S. Sharma, Hydrothermally synthesized mos2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surf. Sci. 532, 147373–147382 (2020)

    Article  CAS  Google Scholar 

  54. C. Wang, X.Q. Fu, X.Y. Xue, Y.G. Wang, T.H. Wang, Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology 18, 145506–145511 (2007)

    Article  Google Scholar 

  55. S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, N. Hongsith, Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256, 998–1002 (2009)

    Article  CAS  Google Scholar 

  56. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/MoO3 nanocomposite for selective NH3 detection in a humid environment. ACS Sustai. Chem. Eng. 9, 7328–7340 (2021)

    Article  CAS  Google Scholar 

  57. J. Cao, H. Dou, H. Zhang, H. Mei, S. Liu, T. Fei, R. Wang, L. Wang, T. Zhang, Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sens. Actuators, B Chem. 198, 180–187 (2014)

    Article  CAS  Google Scholar 

  58. Shailja, K.J. Singh, R.C. Singh, Xylene sensing using Dy-doped NiO nanoparticles. IOP Conf. Ser.: Mater Sci. Eng. 1225, 012061–012069 (2022)

    Article  CAS  Google Scholar 

  59. H.J. Kim, K.I. Choi, K.M. Kim, C.W. Na, J.H. Lee, Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens. Actuators, B Chem. 792, 1029–1037 (2012)

    Article  Google Scholar 

  60. H. Chenab, S. Aoab, G.-D. Li, Q.G.X. Zou, C. Wei, Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures. Sens. Actuators, B Chem. 282, 331–338 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the university’s Central Instrumental Facility for providing experimental facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

S: synthesis, measurements, characterization, and Writing—Original draft, KJS: Conceptualization of work and Supervision, SS: Writing—Original draft preparation. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to K. J. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shailja, Singh, K.J. & Sharma, S. Selective xylene sensor employing europium-doped nickel oxide nanoparticles. J Mater Sci: Mater Electron 33, 26243–26262 (2022). https://doi.org/10.1007/s10854-022-09309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09309-z

Navigation