Skip to main content
Log in

ZnO nanoparticles: hydrothermal synthesis and 4-nitrophenol sensing property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper reports a facile hydrothermal synthesis, characterization and sensing application of zinc oxide (ZnO) nanostructures. ZnO nanostructures were synthesized by mixing triethylamine (TEA) with zinc nitrate at 60 °C followed by calcination at 650 °C for 6 h. The detailed characterizations conformed the synthesized ZnO nanostructures. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectral analysis confirmed the formation of hexagonal ZnO. Band gap of the ZnO nanoparticles was determined by UV–visible absorption spectroscopy. Morphology and size of the sample was examined by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). It shows that the sample has rod and hexagonal morphology. Elemental composition was determined by energy dispersive X-ray (EDX) spectroscopy. The ZnO was coated on glassy carbon electrode (ZnO/GCE) and it was utilized as an electrochemical sensor for 4-nitrophenol (4-Np). Sensitivity and detection limit of ZnO/GCE towards 4-Np was found to be 0.04 µA/mM and 2.09 × 10−5 M. The result suggests that ZnO has suitable sensor detection of 4-Np.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. 22, 751 (2011)

    Google Scholar 

  2. C.S. Rout, S.H. Krishna, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 418, 586 (2006)

    Article  Google Scholar 

  3. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Environ. Sci. Technol. 43, 9216 (2009)

    Article  Google Scholar 

  4. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998)

    Article  Google Scholar 

  5. M. Vafaeea, M.S. Ghamsarib, Mater. Lett. 61, 3265 (2007)

    Article  Google Scholar 

  6. Y. Li, H. Feng, N. Zhang, C. Sheng, Trans. Nonferrous. Met. Soc. China, 20, 119 (2010)

    Article  Google Scholar 

  7. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, Mater. Lett. 60, 1828 (2006)

    Article  Google Scholar 

  8. G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater. Res. Bull. 46, 2560 (2011)

    Article  Google Scholar 

  9. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107, 659 (2003)

    Article  Google Scholar 

  10. B.B. Rao, Mater. Chem. Phys. 64, 62 (2000)

    Article  Google Scholar 

  11. J. Perelaer, J. Mater. Chem 20, 8446 (2010)

    Article  Google Scholar 

  12. X. Yu, J. Yu, Environ. Sci. Technol. 42, 4902 (2008)

    Article  Google Scholar 

  13. W. Beek, J. Phys. Chem. B 109, 9505 (2005)

    Article  Google Scholar 

  14. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 1 (2013)

    Article  Google Scholar 

  15. S. Polarz, A. Roy, M. Merz, H.S. Schroder, D. Schneider, L. Bacher, G. Kruis, E. Frank, M. Driess, Small 1, 540 (2005)

    Article  Google Scholar 

  16. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002)

    Article  Google Scholar 

  17. M.K. Debanath, S. Karmakar, Mater. Lett. 111, 116 (2013)

    Article  Google Scholar 

  18. D. Li, V. Balek, N. Ohashi, T. Mitsuhashi, S. Hishita, H. Haneda, J. Colloid Interface Sci. 289, 472 (2005)

    Article  Google Scholar 

  19. Y. Zeng, Electrochim. Acta 130, 504 (2014)

    Article  Google Scholar 

  20. N. Assi, A. Mohammadi, Q.S. Manuchehri, R.B. Walker, Desal. Water Treat. 54, 1939 (2015)

    Article  Google Scholar 

  21. B. Divband, M. Khatamian, Appl. Surf. Sci. 284, 80 (2013)

    Article  Google Scholar 

  22. S. Meshram, Chem. Eng. J. 172, 1008 (2011)

    Article  Google Scholar 

  23. H. Zeng, Anal. Chem. 84, 10537 (2012)

    Article  Google Scholar 

  24. X.D. Wang, O.S. Wolfbeis, Anal. Chem. 85, 487 (2012)

    Article  Google Scholar 

  25. F. Patolsky, G. Zheng, C.M. Lieber, Nature 1, 1711 (2006)

    Google Scholar 

  26. S.W. Bian, Langmuir 27, 6059 (2011)

    Article  Google Scholar 

  27. K. Ravichandrika, P. Kiranmayi, N. Ravikumar, Int. J. Pharm. Pharm. Sci. 4, 336 (2012)

    Google Scholar 

  28. G. Lakshminarayana, S. Buddhudu, Spectrochim Acta A 62, 364 (2005)

    Article  Google Scholar 

  29. J.M. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)

    Article  Google Scholar 

  30. V. Russo, J. Raman Spectrosc. 39, 205 (2008)

    Article  Google Scholar 

  31. S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B 102, 2854 (1998)

    Article  Google Scholar 

  32. A. Akdag, H.F. Budak, M. Yilmaz, A. Efe, M. Buyukaydin, M. Can, G. Turgut, E. Sonmez, J. Phys. Conf. Ser. 707, 012020 (2016)

    Article  Google Scholar 

  33. B. Fang, C. Zhang, W. Zhang, G. Wang, Electrochim. Acta 55, 178 (2009)

    Article  Google Scholar 

  34. A.E. Radi, J.M. Montornés, C.K. O’Sullivan, J. Electroanal. Chem. 587, 140 (2006)

    Article  Google Scholar 

  35. L. Zhang, J. Nanopar. Res. 9, 479 (2007)

    Article  Google Scholar 

  36. E. Hanski, G. Rimon, A. Levitzki, Biochemistry, 18, 846 (1979)

    Article  Google Scholar 

  37. M. Ahmad, C. Pan, L. Gan, Z. Nawaz, J. Zhu, J. Phys. Chem. B 114, 243 (2009)

    Google Scholar 

  38. M.M. Rahman, S.B. Khan, A.M. Asiri, A.G. Al-Sehemi, Electrochim. Acta 112, 422 (2013)

    Article  Google Scholar 

  39. S.B. Khan, M.M. Rahman, K. Akhtar, A.M. Asiri, M.A. Rub, PLoS ONE 9, e85290 (2014)

    Article  Google Scholar 

  40. V.A. Pedrosa, L. Codognoto, L.A. Avaca, J. Braz. Chem. Soc. 14, 530 (2003)

    Article  Google Scholar 

  41. A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, S.M.I. Bhanger, Electroanalysis 21, 1786 (2009)

    Article  Google Scholar 

  42. Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochem. Commun. 11, 1365 (2009)

    Article  Google Scholar 

  43. W. Sun, M.X. Yang, Q. Jiang, K. Jiao, Chin. Chem. Lett. 19, 1156 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by Dr. A. Saravanakumar (PSG Hospitals, Coimbatore) and Dr. S. Poongodi (PSGR Krishnammal College for Women, Coimbatore). The FE-SEM image was taken with the help of NRC from SRM University, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen P. Kavitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhoshkumar, A., Kavitha, H.P., Suresh, R. et al. ZnO nanoparticles: hydrothermal synthesis and 4-nitrophenol sensing property. J Mater Sci: Mater Electron 28, 9272–9278 (2017). https://doi.org/10.1007/s10854-017-6663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6663-6

Keywords

Navigation