Skip to main content
Log in

Enhancing the linear and nonlinear optical properties by ZnS/V-doped polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol polymeric nanocomposites for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vanadium-doped nano zinc sulfide (ZnS/V) was formed using solid state reaction method at low temperature. Polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/polyethylene glycol (PEG) films composed with different content of ZnS/V nanoparticles (0, 1, 3, 5, 10 wt%) were produced using casting technique. The structural feature of ZnS/V nanoparticles was examined using Rietveld method. The structure and optical characteristics of the filled PVA/CMC/PEG blended polymers were investigated applying X-ray diffraction, Fourier transform infrared, fluorescence, energy dispersive X-ray analysis, scanning electron microscope and diffused reflectance techniques. The investigated results indicated that the optical parameters including the refractive index and nonlinear optics of the blended polymer exhibited a considerable improvement by loading nano ZnS/V. The direct and indirect optical bandgaps could be tailored between (5.63, 5.28) eV for the pure blend and (3.64, 2.77) eV for blended polymer doped with10% ZnS/V. Broad FL spectra were obtained for all blended polymers with FL intensity greatly affected with ZnS/V nanoparticles while the FL peaks are shifted a little. These results indicate the possibility of applying the samples under the study in several potential optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, O.H. Abd-Elkader, G. Lakshminarayana, Opt. Mater. 128, 112411 (2022)

    Article  CAS  Google Scholar 

  2. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, O.H. Abd-Elkader, Opt. Mater. 128, 112379 (2022)

    Article  CAS  Google Scholar 

  3. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, M.A. Shar, Optik 258, 168941 (2022)

    Article  CAS  Google Scholar 

  4. S. Moulay, Polym. Plast. Technol. Eng. 54, 1289 (2015)

    Article  CAS  Google Scholar 

  5. Sunaryono, M.N. Kholifah, N. Mufti, A. Taufiq, M. Diantoro, AIP Conf. Proc. 2231, 040006 (2020)

    Article  CAS  Google Scholar 

  6. Z.K. Heiba, M.B. Mohamed, A. Badawi, Phys. Scr. 97(5), 055802 (2022)

    Article  Google Scholar 

  7. Z.K. Heiba, M.B. Mohamed, A. Badawi, Appl. Phys. A 128(5), 1 (2022)

    Google Scholar 

  8. B. Jarzabek, P. Nitschke, M. Godzierz, M. Palewicz, T. Piasecki, T.P. Gotszalk, Polymers 14, 858 (2022)

    Article  CAS  Google Scholar 

  9. B. Guruswamy, V. Ravindrachary, C. Shruthi, R.N. Sagar, S. Hegde, AIP Conf. Proc. 1953, 030211 (2018)

    Article  Google Scholar 

  10. K. Sharma, P. Kumar, G. Verma, A. Kumar, Optik 206, 164357 (2020)

    Article  CAS  Google Scholar 

  11. A. Badawi, Appl. Phys. A 127, 51 (2021)

    Article  CAS  Google Scholar 

  12. A. Badawi, S.S. Alharthi, Superlattices Microstruct. 151, 106838 (2021)

    Article  CAS  Google Scholar 

  13. A.M. Nawar, H.E. Ali, Y. Khairy, N.S. Awwad, H. Algarni, M. Shakir, M.A. Sayed, K.F. Fawy, S.A. Alderhami, M. Abdel-Aziz, Polym. Adv. Technol. (2022). https://doi.org/10.1002/pat.5783

    Article  Google Scholar 

  14. H.E. Ali, Y. Khairy, M.A. Sayed, H. Algarni, M. Shkir, F. Abdel Maged, Optik 251, 168373 (2022)

    Article  CAS  Google Scholar 

  15. M. El-Naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, J. Taibah Univ. Sci. 16(1), 174 (2022)

    Article  Google Scholar 

  16. H.E. Ali, M.A. Sayed, H. Algarni, Y. Khairy, M.M. Abdel-Aziz, J Vinyl Addit. Technol. 28, 444 (2022)

    Article  CAS  Google Scholar 

  17. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)

    Article  Google Scholar 

  18. L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010)

    Article  CAS  Google Scholar 

  19. L. Upadhyaya, J. Singh, V. Agarwal, A.C. Pandey, S.P. Verma, P. Das, R.P. Tewari, J. Polym. Res. 21, 1 (2014)

    Article  CAS  Google Scholar 

  20. R. Megha, Y.T. Ravikiran, S. Kotresh, S.C. Vijaya Kumari, H.G. Raj Prakash, S. Thomas, Cellulose 25(2), 1147 (2021)

    Article  Google Scholar 

  21. H.E. Assender, A.H. Windle, Polymer 39, 4295 (1998)

    Article  CAS  Google Scholar 

  22. R. Ricciardi, F. Auriemma, C. De Rosa, F. Laupretre, Macromolecules 37(5), 5–1921 (2004)

    Article  Google Scholar 

  23. Y. Golitsyna, M. Pulstb, M.H. Samiullahb, K. Busseb, J. Kresslerb, D. Reicherta, Polymer 165, 72 (2019)

    Article  Google Scholar 

  24. J. Gao, X. Tang, Z. Chen, H. Ding, Y. Liu, X. Li, Y. Chen, Polymers 11, 1503 (2019)

    Article  CAS  Google Scholar 

  25. N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, S. Asath Bahadur, Polym. Bull. 71, 1061 (2014)

    Article  CAS  Google Scholar 

  26. Q. Xia, X.J. Zhao, S.J. Chen, W.Z. Ma, J. Zhang, X.L. Wang, Express Polym. Lett. 4(5), 284 (2010)

    Article  CAS  Google Scholar 

  27. A.M. Farah, F.T. Thema, E.D. Dikio, Int. J. Electrochem. Sci. 7, 5069 (2012)

    CAS  Google Scholar 

  28. M.A. Morsi, A.H. Oraby, A.G. Elshahawy, R.M. Abd El-Hady, J. Mater. Res. Technol. 8(6), 5996 (2019)

    Article  CAS  Google Scholar 

  29. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimovd, Acta Crystallogr. B 75(5), 880 (2019)

    Article  CAS  Google Scholar 

  30. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Electron. Mater. 48, 1686 (2019)

    Article  CAS  Google Scholar 

  31. O.M. Ntwaeaborwa, R.E. Kroon, V. Kumar, T. Dubroca, J.-P. Ahn, J.-K. Park, H.C. Swart, J. Phys. Chem. Solids 70(11), 1438 (2009)

    Article  CAS  Google Scholar 

  32. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, J. Polym. Res. 20, 1 (2013)

    Article  CAS  Google Scholar 

  33. A Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab,·S.E. Alomairy, J. Mater. Sci.: Mater. Electron. 28, 10877 (2017)

  34. A. Badawi, Appl. Phys. A 126(5), 1 (2020)

    Article  Google Scholar 

  35. W. Hu, Z. Zou, H. Li, Z. Zhang, J. Yu, Q. Tang, Int. J. Biol. Macromol. 204, 284 (2022)

    Article  CAS  Google Scholar 

  36. Y.H. Elbashar, W.A. Rrashidy, J.A. Khaliel, D.I. Moubarak, A.S. Abdel-Rahaman, H.H. Hassan, Nonlinear Opt. Quantum Opt. 51, 171 (2019)

    CAS  Google Scholar 

  37. R. Boughalmi, A. Boukhachem, I. Gaied, K. Boubaker, M. Bouhafs, M. Amlouk, Mater. Sci. Semicond. Process. 16(6), 1584 (2013)

    Article  CAS  Google Scholar 

  38. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. 26, 5303 (2015)

    CAS  Google Scholar 

  39. K. Tanaka, Thin Solid Films 66, 271 (1980)

    Article  CAS  Google Scholar 

  40. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, J. Inorg. Organomet. Polym. Mater. 28(3), 1114 (2018)

    Article  CAS  Google Scholar 

  41. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Results Phys. 6, 1103 (2016)

    Article  Google Scholar 

  42. Z.K. Heiba, M.B. Mohamed, J. Mol. Struct. 1181, 507 (2019)

    Article  CAS  Google Scholar 

  43. G. Raja, S. Gopinath, R. Azhagu, A.K. Shukla, M.S. Alhoshan, K. Sivakumar, J. Phys. E 158, 69 (2016)

    Article  Google Scholar 

  44. Z.K. Heiba, M.B. Mohamed, N.G. Imam, N.Y. Mostafa, Colloid Polym. Sci. 294(2), 357 (2016)

    Article  CAS  Google Scholar 

  45. K.K. Dey, P. Kumar, R.R. Yadav, A. Dhara, A.K. Srivastava, RSC Adv. 4, 10123 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Taif University Researchers Supporting Project Number (TURSP-2020/249), Taif University, Taif, Saudi Arabia.

Funding

This study is supported by Taif University.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed, discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to Zein K. Heiba or Mohamed Bakr Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-naggar, A.M., Heiba, Z.K., Kamal, A.M. et al. Enhancing the linear and nonlinear optical properties by ZnS/V-doped polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol polymeric nanocomposites for optoelectronic applications. J Mater Sci: Mater Electron 33, 25127–25138 (2022). https://doi.org/10.1007/s10854-022-09217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09217-2

Navigation