Skip to main content

Advertisement

Log in

Fascinating Physical Properties of 2D Hybrid Perovskite [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The 2-D organic–inorganic hybrid perovskites of the formula [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4 were prepared by slow evaporation from ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Microchemical analysis and x-ray diffraction (XRD) were used to confirm the formation of the presently investigated hybrids. Differential scanning calorimetry (DSC) indicated order–disorder transitions at T1 = 357 K, T2 = 388 K, and T3 = 398 K for x = 0, 2 and 4 of the three heptain diammonium Cu hybrid perovskites, respectively. These transitions are in good agreement with the electrical permittivity results at different frequencies and temperatures. Optical properties and estimated band gap energy reveal that the band gap energy decreases sharply with replacement of Cl ion by Br ion where the band gap energy of [(NH3)(CH2)7(NH3)]CuBr4, x = 0 (denoted 2C7CuBr) is 1.6 eV (brown color) and for [(NH3)(CH2)7(NH3)]CuCl4, x = 4 (denoted 2C7CuCl) is 2.6 eV (yellow color). The differential magnetic susceptibility of 2C7CuBr in the temperature range 80–300 K indicates the effective magnetic moment μeff = 2.05 BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tichý, J. Benes, W. Hälg, and H. Arend, Acta Cryst. B34, 2970 (1978).

    Article  Google Scholar 

  2. K. Tichý, J. Benes, R. Kind, and H. Arend, Acta Cryst. B36, 1355 (1980).

    Article  Google Scholar 

  3. A. Kallel, J. Fail, H. Fuess, and A. Daoud, Acta Cryst. B36, 2788 (1980).

    Article  Google Scholar 

  4. J.K. Garland, K. Emerson, and M.R. Pressprich, Acta Cryst. C46, 1603 (1990).

    Google Scholar 

  5. N. Guo, Y.-H. Lin, G.-F. Zeng, and S.-Q. Xi, Acta Cryst. C48, 542 (1992).

    Google Scholar 

  6. M. Khechoubi, A. Bendani, N.B. Chanh, C. Courseille, R. Duplessix, and M. Couzi, J. Phys. Chem. Solids 55, 1277 (1994).

    Article  Google Scholar 

  7. C. Courseille, N.B. Chanh, Th Maris, A. Daoud, Y. Abid, and M. Laguerre, Phys. Stat. Sol. A143, 203 (1994).

    Article  Google Scholar 

  8. T. Maris, G. Bravic, N.B. Chanh, J.M. Leger, J.C. Bissey, A. Villesuzanne, R. Zouari, and A. Daoud, J. Phys. Chem. Solids 57, 1963 (1996).

    Article  Google Scholar 

  9. J.J. Criado, A. Jiménez-Sánchez, F.H. Cano, R. Sáez-Puche, and E. Rodríguez-Fernández, Acta Cryst. B55, 947 (1999).

    Article  Google Scholar 

  10. J. Guan, Z. Tang, and A.M. Guloy, Chem. Commun. 18, 1833 (1999).

    Article  Google Scholar 

  11. A.H. Mahmoudkhani and V. Langer, Acta Cryst. E58, m592 (2002).

    Google Scholar 

  12. M.F. Mostafa and A. Hassen, Phase Trans. 79, 305 (2006).

    Article  Google Scholar 

  13. A. Lamhamdi, E. Mejdoubi, K. Fejfarová, M. Dusek, and B. El Bali, Acta Cryst. E65, m215 (2009).

    Google Scholar 

  14. K. Pradeesh, G.S. Yadav, M. Singh, and G. Vijaya Prakash, Mat. Chem. Phys. 124, 44 (2010).

    Article  Google Scholar 

  15. S.K. Abdel-Aal, G. Kocher-Oberlehner, A. Ionov, and R.N. Mozhchil, Appl. Phys. A 123, 531 (2017).

    Article  Google Scholar 

  16. M.F. Mostafa, S.K. Abdel-Aal, and A.K. Tammam, Ind. J. Phys. 88, 49 (2014).

    Article  Google Scholar 

  17. S.K. Abdel-Aal, Solid State Ionics 303, 29 (2017).

    Article  Google Scholar 

  18. M.F. Mostafa, S.S. El-khiyami, and S.K. Abdel-Aal, J. Mol. Struct. 1127, 59 (2017).

    Article  Google Scholar 

  19. S.K. Abdel-Aal and A.S. Abdel-Rahman, J. Cryst. Growth 457, 282 (2017).

    Article  Google Scholar 

  20. S. González-Carrero, R.E. Galian, and J. Pérez-Prieto, Part. Syst. Charact. 32, 709 (2015).

    Article  Google Scholar 

  21. B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, Ch Simon, and I. Bakaimi, Phys. Rev. B 81, 224434 (2010).

    Article  Google Scholar 

  22. D.B. Mitzi, K. Chondroudis, and C.R. Kagan, IBM J. Res. Dev. 45, 29 (2001).

    Article  Google Scholar 

  23. Z. Cheng and J. Lin, Cryst. Eng. Commun. 12, 2646 (2010).

    Article  Google Scholar 

  24. D.W. Phelps, D.B. Losee, W.E. Hatfield, and D.J. Hodgson, Inorg. Chem. 15, 3147 (1976).

    Article  Google Scholar 

  25. K. Halvorson and R.D. Willett, Acta Cryst. C44, 2071 (1988).

    Google Scholar 

  26. M.F. Mostafa and S.A. El-Hakim, Phase Trans. 76, 587 (2003).

    Article  Google Scholar 

  27. M.F. Mostafa and A.A.A. Youssef, Z. Naturforsch. A59, 35 (2004).

    Google Scholar 

  28. M.F. Mostafa, A.A.A. Youssef, S.S. Montasser, and S.S. Khyami, Z. Naturforsch. A60, 837 (2005).

    Google Scholar 

  29. X. Pan, G. Wu, M. Wang, and H. Chen, J. Zhejiang Univ. Sci. A 10, 710 (2009).

    Article  Google Scholar 

  30. S.K. Abdel-Aal, A.S. Abdel-Rahman, G. Kocher-Oberlehner, A. Ionov, and R.N. Mozhchil, Acta Cryst. A73, c1116 (2017).

    Google Scholar 

  31. K. Elmebrouki, S. Tamsamani, J. Aazza, M. Khechoubi, and A. Khmou, J. Asian Sci. Res. 1, 216 (2011).

    Google Scholar 

  32. P. Mondal, S.K. Abdel-Aal, D. Das, and S.M. Islam, Catal. Lett. 147, 2332 (2017).

    Article  Google Scholar 

  33. M.F. Mostafa, S.S. ElKhiyami, and S.A. Alal, Mat. Chem. Phys. 199, 454 (2017).

    Article  Google Scholar 

  34. S.K. Abdel-Aal and A.S. Abdel-Rahman, The Cambridge Crystallographic Data Centre, CCDC 1401387 (2015).

  35. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. (New York: Prentice-Hall, 2001), p. 167.

    Google Scholar 

  36. T. Maris, N.B. Chanh, J.-C. Bissey, N. Filloleau, S. Flandrois, R. Zouari, and A. Daoud, Phase Trans. 66, 81 (1998).

    Article  Google Scholar 

  37. R. Kind, S. Plesko, P. Gunter, J. Roos, and J. Fousek, Phys. Rev. B 23, 5301 (1981).

    Article  Google Scholar 

  38. A.A. Radhakrishnan and B.B. Beena, Ind. J. Adv. Chem. Sci. 2, 158 (2014).

    Google Scholar 

  39. J. Essic and R. Mather, Am. J. Phys. 61, 646 (1993).

    Article  Google Scholar 

  40. R. Williardson and A. Beer, Optical Properties of III–V Compounds (New York: Academic, 1967), p. 318.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial Support of Cairo University, Electromagnetic Lab. Members (Mohga F., Shimaa S., Ahmed K.), and Polymer Technology Lab. Members (Amin S., Hamdy O.). This work has been done at the Physics Department, Faculty of Science, Cairo University. Optical properties were measured at Central Metallurgical Research and Development Institute, Tibeen, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seham K. Abdel-Aal or Ahmed S. Abdel-Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aal, S.K., Abdel-Rahman, A.S. Fascinating Physical Properties of 2D Hybrid Perovskite [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4. J. Electron. Mater. 48, 1686–1693 (2019). https://doi.org/10.1007/s11664-018-06916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06916-7

Keywords

Navigation