Skip to main content
Log in

Enhanced multiferroic properties in Ba and Sm co-doped BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of co-doping with Ba and Sm in Bi and Fe sites of BiFeO3 (BFO), respectively, on the structural and multiferroic properties has been studied in this investigation. Multiferroic ceramics Bi0.85Ba0.15Fe1−xSmxO3 (BBFSO) with x = 0, 0.02, 0.05, and 0.07 have been synthesized by using the standard solid-state reaction method. The Structural depiction and surface morphology are accomplished by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. Analysis of the XRD pattern reveals that the structural phase is found pseudo-cubic with the substitution of Ba and Sm for all the samples. Microstructural investigation shows that the samples possess fine crystalline structure and the estimated grain size decreases with the increase in Sm content. The electromagnetic properties such as complex initial permeability, relative quality factor, dielectric constant, dielectric loss, and ac conductivity have been measured by Wayne Kerr Impedance Analyzer. It is found that co-doped samples have improved dielectric property. The sample having 2% Sm exhibits the highest dielectric constant and lowest loss in the dispersive region. Enhanced electric polarization is found for co-doped samples, which might be due to the reduction in leakage current. From impedance spectroscopy analysis, it is observed that only grain boundary is responsible for the conduction process and the electric modulus confirms the existence of electronic relaxation. The real part of initial permeability and relative quality factor increase significantly with Sm doping. The magnetic hysteresis loops confirm that Sm doping notably increases the coercivity of the Bi0.85Ba0.15FeO3 ceramics. The coexistence of ferroelectricity and ferromagnetism in BBFSO as is evident from the P–E and M–H loops can be used for fabricating magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. R. Ramesh, Nature 461, 1218 (2009)

    Article  CAS  Google Scholar 

  3. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  CAS  Google Scholar 

  4. G.A. Smolenskii, I.E. Chupis, Sov. Phys. - Uspekhi 25, 415 (1982)

    Google Scholar 

  5. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

    Article  CAS  Google Scholar 

  6. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  7. A. Agarwal, S. Sanghi, Ashima, N. Ahlawat, J. Phys. D 45, 165001 (2012)

    Article  Google Scholar 

  8. R. Das, K. Mandal, J. Magn. Magn. Mater. 324, 1913 (2012)

    Article  CAS  Google Scholar 

  9. V.B. Naik, R. Mahendiran, Solid State Commun. 149, 754 (2009)

    Article  CAS  Google Scholar 

  10. V.A. Khomchenko, M. Kopcewicz, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, J.M. Vieira, A.L. Kholkin, J. Phys. D. Appl. Phys. 41, 102003 (2008)

    Article  Google Scholar 

  11. Y. Zhang, Z. Wang, J. Zhu, X. He, H. Xue, S. Li, W. Mao, Y. Pu, X. Li, J. Environ. Sci. 124, 310 (2023)

    Article  Google Scholar 

  12. F. Sánchez-De Jesús, A.M. Bolarín-Miró, C.A. Cortés-Escobedo, A. Barba-Pingarrón, F. Pedro-García, J. Alloys Compd. 824, 153944 (2020)

    Article  Google Scholar 

  13. W. Mao, Q. Yao, N. Liu, H. Shu, J. Zhu, Y. Pu, X. Li, Appl. Phys. A 127, 1 (2021)

    Article  Google Scholar 

  14. G.L. Yuan, S.W. Or, Appl. Phys. Lett. 88, 062905 (2006)

    Article  Google Scholar 

  15. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z.T. Song, S.L. Feng, Appl. Phys. Lett. 91, 082906 (2007)

    Article  Google Scholar 

  16. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104 (2007)

    Article  Google Scholar 

  17. Q.H. Jiang, J. Ma, Y.H. Lin, C.W. Nan, Z. Shi, Z.J. Shen, Appl. Phys. Lett. 91, 022914 (2007)

    Article  Google Scholar 

  18. S.P. Balmuchu, P. Dobbidi, Phys. B Condens. Matter 638, 413937 (2022)

    Article  CAS  Google Scholar 

  19. J. Singh, A. Agarwal, S. Sanghi, P. Prakash, A. Das, C.L. Prajapat, M. Rangi, AIP Adv. 9, 025110 (2019)

    Article  Google Scholar 

  20. T. Wang, X.L. Wang, S.H. Song, Q. Ma, Ceram. Int. 46, 15228 (2020)

    Article  CAS  Google Scholar 

  21. F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010)

    Article  CAS  Google Scholar 

  22. J. Liu, L. Fang, F. Zheng, S. Ju, M. Shen, Appl. Phys. Lett. 95, 022511 (2009)

    Article  Google Scholar 

  23. Q. Yao, X. Xu, S. Peng, Y. Zhu, Z. Wang, Y. Ma, X. Wang, W. Mao, X. Li, J. Mater. Sci. Mater. Electron. 28, 463 (2017)

    Article  CAS  Google Scholar 

  24. X. Zheng, Q. Xu, Z. Wen, X. Lang, D. Wu, T. Qiu, M.X. Xu, J. Alloys Compd. 499, 108 (2010)

    Article  CAS  Google Scholar 

  25. N. Jeon, D. Rout, I.W. Kim, S.J.L. Kang, Appl. Phys. Lett. 98, 072901 (2011)

    Article  Google Scholar 

  26. C. Tian, Q. Yao, Z. Tong, H. Zhou, G. Rao, J. Deng, Z. Wang, J. Wang, J. Rare Earths 39, 835 (2021)

    Article  CAS  Google Scholar 

  27. S.M. Yakout, J. Supercond. Nov. Magn. 34, 317 (2021)

    Article  CAS  Google Scholar 

  28. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  29. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  30. A. Goldman, Handbook of Modern Ferromagnetic Materials (Kluwer Academic Publishers, Boston, 1999)

    Book  Google Scholar 

  31. G. Biasotto, A. Simões, C. Foschini, S. Antônio, M. Zaghete, J. Varela, Process. Appl. Ceram. 5, 171 (2011)

    Article  CAS  Google Scholar 

  32. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  33. L. Zhai, Y.G. Shi, S.L. Tang, L.Y. Lv, Y.W. Du, J. Phys. D. Appl. Phys. 42, 165004 (2009)

    Article  Google Scholar 

  34. M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, J. Magn. Magn. Mater. 401, 600 (2016)

    Article  CAS  Google Scholar 

  35. T. El Bahraoui, M. Taibi, A.M. El-Naggar, T.S. Tlemçani, A.A. Albassam, M. Abd-Lefdil, I.V. Kityk, N.S. AlZayed, A.O. Fedorchuk, J. Mater. Sci. Mater. Electron. 26, 9949 (2015)

    Article  Google Scholar 

  36. D. Xin, Z. Peng, F. Huang, Q. Chen, J. Wu, Y. Wang, X. Yue, D. Xiao, J. Zhu, J. Mater. Sci. Mater. Electron. 27, 913 (2016)

    Article  CAS  Google Scholar 

  37. H. Salmang, Angew. Chemie 71, 228 (1958)

    Article  Google Scholar 

  38. T.K. Gupta, R.L. Coble, J. Am. Ceram. Soc. 51, 521 (1968)

    Article  CAS  Google Scholar 

  39. S.Z. Ma, F.H. Liao, S.X. Li, M.Y. Xu, J.R. Li, S.H. Zhang, S.M. Chen, R.L. Huang, S. Gao, J. Mater. Chem. 13, 3096 (2003)

    Article  CAS  Google Scholar 

  40. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  CAS  Google Scholar 

  41. I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)

    Article  CAS  Google Scholar 

  42. S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, J. Mater. Sci. 44, 5102 (2009)

    Article  CAS  Google Scholar 

  43. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  CAS  Google Scholar 

  44. P.M. Woodward, Acta Crystallogr. B 53, 44 (1997)

    Article  Google Scholar 

  45. O.F. Caltun, L. Spinu, A. Stancu, L.D. Thung, W. Zhou, J. Magn. Magn. Mater. 242–245, 160 (2002)

    Article  Google Scholar 

  46. K. Brinkman, T. Iijima, K. Nishida, T. Katoda, H. Funakubo, Ferroelectrics 357, 35 (2007)

    Article  CAS  Google Scholar 

  47. G.D. Hu, X. Cheng, W.B. Wu, C.H. Yang, Appl. Phys. Lett. 91, 232909 (2007)

    Article  Google Scholar 

  48. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  49. J.C. Maxwell, Electrricity and Magnetism (Oxford University Press, Oxford, 1929)

    Google Scholar 

  50. Q. Fu, F. Xue, Z. Zheng, D. Zhou, L. Zhou, Y. Tian, Y. Hu, Ceram. Int. 41, 4050 (2015)

    Article  CAS  Google Scholar 

  51. F. Xue, Q. Fu, D. Zhou, L. Zhou, Y. Hu, Z. Zheng, G. Jian, L. Hao, J. Phys. D. Appl. Phys. 48, 305004 (2015)

    Article  Google Scholar 

  52. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010)

    Article  Google Scholar 

  53. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, J. Appl. Phys. 115, 024102 (2014)

    Article  Google Scholar 

  54. G. Catalan, Ferroelectrics 433, 65 (2012)

    Article  CAS  Google Scholar 

  55. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  56. S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, J. Magn. Magn. Mater. 390, 61 (2015)

    Article  CAS  Google Scholar 

  57. R. Das, T. Sarkar, K. Mandal, J. Phys. D. Appl. Phys. 45, 455002 (2012)

    Article  Google Scholar 

  58. M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloys Compd. 509, 1861 (2011)

    Article  CAS  Google Scholar 

  59. M.A. Matin, M.N. Hossain, M.A. Ali, M.A. Hakim, M.F. Islam, Results Phys. 12, 1653 (2019)

    Article  Google Scholar 

  60. B. Kaur, L. Singh, V.A. Reddy, D.Y. Jeong, N. Dabra, J.S. Hundal, Int. Assoc. Adv. Mater. 7, 1015 (2016)

    CAS  Google Scholar 

  61. S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, J. Magn. Magn. Mater. 401, 443 (2016)

    Article  CAS  Google Scholar 

  62. J. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  63. D. Arun Kumar, S. Selvasekarapandian, H. Nithya, A. Sakunthala, M. Hema, Physica B 405, 3803 (2010)

    Article  CAS  Google Scholar 

  64. M. Kaiser, Physica B 407, 606 (2012)

    Article  CAS  Google Scholar 

  65. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  CAS  Google Scholar 

  66. C.M. Kanamadi, S.R. Kulkarni, B.K. Chougule, J.H. Jeong, B.C. Choi, Y.S. Kang, J. Mater. Sci. Mater. Electron. 20, 632 (2009)

    Article  CAS  Google Scholar 

  67. V.P. Mirjana, R. Grigalaitis, N. Ilic, J.D. Bobić, A. Dzunuzovic, J. Banys, B.D. Stojanović, J. Alloys Compd. 724, 959 (2017)

    Article  Google Scholar 

  68. C. Quan, Y. Ma, Y. Han, X. Tang, M. Lu, W. Mao, J. Zhang, J. Yang, X. Li, W. Huang, J. Alloys Compd. 635, 272 (2015)

    Article  CAS  Google Scholar 

  69. X. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloys Compd. 507, 157 (2010)

    Article  CAS  Google Scholar 

  70. A. Anwar, A. Akter, M.N.I. Khan, AIP Adv. 10, 045307 (2020)

    Article  CAS  Google Scholar 

  71. W. Cai, J. Gao, C. Fu, L. Tang, J. Alloys Compd. 487, 668 (2009)

    Article  CAS  Google Scholar 

  72. M.D. Rahaman, S.K. Saha, T.N. Ahmed, D.K. Saha, A.K.M.A. Hossain, J. Magn. Magn. Mater. 371, 112 (2014)

    Article  CAS  Google Scholar 

  73. J. Wang, A. Scholl, H. Zheng, S.B. Ogale, D. Viehland, D.G. Schlom, N.A. Spaldin, K.M. Rabe, M. Wuttig, L. Mohaddes, J. Neaton, U. Waghmare, T. Zhao, R. Ramesh, Science (80-) 307, 1203 (2005)

    Article  Google Scholar 

  74. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, D.K. Mishra, D.R. Sahu, A.K. Pradhan, V.V. Srinivasu, B.B. Nayak, S. Verma, B.K. Roul, J. Magn. Magn. Mater. 322, 3614 (2010)

    Article  CAS  Google Scholar 

  75. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, J. Yu, Appl. Phys. Lett. 90, 172507 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Physics, Bangladesh University of Engineering and Technology (BUET) and Atomic Energy Centre, Dhaka (AECD) for providing laboratory facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MdAM: Data curation, Investigation, Methodology, Writing- Original draft preparation, Editing. MKD: Formal analysis, Editing. FA: Formal analysis, Reviewing and Editing. MNIK: Supervision, Reviewing and Editing. SCM: Conceptualization, Supervision, Formal analysis, Writing-Reviewing and Editing.

Corresponding author

Correspondence to S. C. Mazumdar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosa, M.A., Das, M.K., Alam, F. et al. Enhanced multiferroic properties in Ba and Sm co-doped BiFeO3 ceramics. J Mater Sci: Mater Electron 33, 25089–25102 (2022). https://doi.org/10.1007/s10854-022-09215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09215-4

Navigation