Skip to main content

Advertisement

Log in

NiFe2O4 nanoplates decorated on MoS2 nanosheets as an effective visible light-driven heterostructure photocatalyst for the degradation of methyl orange

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, visible-light-driven photocatalysis has gained a broad application scope, owing to the utilization of freely accessible solar energy, for degrading organic pollutants and environmental remediation. High-efficiency photocatalysts require effective charge separation ability and respond well to visible light. Here, we present novel heterostructure photocatalysts composed of NiFe2O4 nanoplate-deposited MoS2 nanosheets (MoS2/NiFe2O4, MSNFO) exhibiting a broad visible-light absorption region and a type-II charge-isolating mechanism for the photocatalytic degradation of methyl orange (MO). The results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy demonstrated that the NiFe2O4 nanoplates were favorably embedded on the surface of sheet-like MoS2. The photocatalytic efficacies of all as-synthesized samples were evaluated via MO degradation under visible-light irradiation. The MSNFO-10 NC exhibited enhanced catalytic activity, which was more than 4.71 and 3.71 times better than those of NiFe2O4 and hexagonal MoS2, respectively. During the photocatalytic process, ·OH radicals and holes were the generated reactive species that played a significant role in the degradation of MO into non-toxic intermediates. The MSNFO nanocomposites could maintain the MO degradation efficiencies exceeding 80% for four consecutive reuse cycles. These outcomes reveal promising photocatalytic performance for MSNFO heterostructures owing to their synergistic interactions, which could facilitate the efficient separation of charge carriers for the degradation of organic contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available in the article and its supplementary material. Raw data supporting the findings of this study are available from the corresponding author upon request.

References

  1. L. Candish, K.D. Collins, G.C. Cook, Chem. Rev. 122, 2907 (2022)

    Article  CAS  Google Scholar 

  2. M. Ikram, M. Rashid, A. Haider, Sustain. Mater. Technol. 30, e00343 (2021)

    CAS  Google Scholar 

  3. J.J. Rueda-Marquez, I. Levchuk, P. Fernández Ibañez, M. Sillanpää, J. Clean. Prod. 258, 120694 (2020)

    Article  CAS  Google Scholar 

  4. M. Saeed, M. Muneer, A. Haq, N. Akram, Environ. Sci. Pollut. Res. 29, 293 (2022)

    Article  CAS  Google Scholar 

  5. S. Marimuthu, A.J. Antonisamy, S. Malayandi, J. Photochem. Photobiol. B 205, 111823 (2020)

    Article  CAS  Google Scholar 

  6. Y. Yuan, R. Guo, L. Hong, Colloids Surf. A 611, 125836 (2021)

    Article  CAS  Google Scholar 

  7. S. Benkhaya, S. M’Rabet, A. El Harfi, Heliyon 6, e03271 (2020)

    Article  Google Scholar 

  8. W. Shi, L. Wang, J. Wang, Sep. Purif. Technol. 292, 120987 (2022)

    Article  CAS  Google Scholar 

  9. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, J. Environ. Manage. 182, 351 (2016)

    Article  CAS  Google Scholar 

  10. T. Shindhal, P. Rakholiya, S. Varjani, Bioengineered 12, 70 (2021)

    Article  CAS  Google Scholar 

  11. M.K.H.M. Nazri, N. Sapawe, Mater. Today Proc. 31, A42 (2020)

    Article  CAS  Google Scholar 

  12. D. Ayodhya, G. Veerabhadram, Mater. Today Energy 9, 83 (2018)

    Article  Google Scholar 

  13. J. Guo, C. Yang, Z. Sun, J. Mater. Sci. Mater. Electron. 31, 16746 (2020)

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Wan, C. Zhang, X. Cao, Sci. Rep. 12, 3261 (2022)

    Article  CAS  Google Scholar 

  15. Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiolog. C 35, 39 (2018)

    Article  Google Scholar 

  16. R. Atla, T.H. Oh, J. Environ. Chem. Eng. 9, 106427 (2021)

    Article  CAS  Google Scholar 

  17. I.T. Bello, A.O. Oladipo, O. Adedokun, S.M. Dhlamini, Mater. Today Commun. 25, 101664 (2020)

    Article  CAS  Google Scholar 

  18. C.M. Nagaraja, M. Kaur, S. Dhingra, Int. J. Hydrogen Energy 45, 8497 (2020)

    Article  CAS  Google Scholar 

  19. S. Harish, P. Bharathi, P. Prasad, RSC Adv. 11, 19283 (2021)

    Article  CAS  Google Scholar 

  20. H. Tran Huu, M.D.N. Thi, V.P. Nguyen, Sci. Rep. 11, 14787 (2021)

    Article  CAS  Google Scholar 

  21. R. Atla, T.H. Oh, Chemosphere 303, 134922 (2022)

    Article  CAS  Google Scholar 

  22. H. Yan, L. Liu, R. Wang, Chem. Eng. J. 401, 126052 (2020)

    Article  CAS  Google Scholar 

  23. H. Parangusan, J. Bhadra, Z. Ahmad, Ceram. Int. 48, 29136 (2022)

    Article  CAS  Google Scholar 

  24. A. Paul, S.S. Dhar, Colloids Surf. A 585, 124090 (2020)

    Article  CAS  Google Scholar 

  25. Y. Zhang, J. He, Q. Yang, J. Power Sources 440, 227120 (2019)

    Article  CAS  Google Scholar 

  26. Z. He, Y. Xia, J. Su, B. Tang, Opt. Mater. 88, 195 (2019)

    Article  CAS  Google Scholar 

  27. A. Shokri, Environ. Chall. 5, 100332 (2021)

    Article  Google Scholar 

  28. B. Palanivel, C. Ayappan, V. Jayaraman, S. Chidambaram, R. Maheswaran, A. Mani, Mater. Sci. Semicond. Proc. 100, 87 (2019)

    Article  CAS  Google Scholar 

  29. R. Koutavarapu, M.R. Tamtam, S.-G. Lee, M.C. Rao, D.-Y. Lee, J. Shim, J. Environ. Chem. Eng. 9, 105893 (2021)

    Article  CAS  Google Scholar 

  30. R. Koutavarapu, M.R. Tamtam, C.R. Myla, M. Cho, J. Shim, J. Environ. Sci. 102, 326 (2021)

    Article  CAS  Google Scholar 

  31. C.V. Reddy, R. Koutavarapu, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Shim, J. Environ. Manage. 268, 110677 (2020)

    Article  CAS  Google Scholar 

  32. J. Liu, D. Zhu, T. Ling, A. Vasileff, S.Z. Qiao, Nano Energy 40, 264 (2017)

    Article  CAS  Google Scholar 

  33. X. Yu, G. Chen, Y. Wang, Nano Res. 13, 437 (2020)

    Article  CAS  Google Scholar 

  34. V.S. Sypu, N.H. Kera, M. Bhaumik, K. Raju, A. Maity, Mater. Today Commun. 26, 101767 (2021)

    Article  CAS  Google Scholar 

  35. J. Yu, C. Zhang, Y. Yang, New J. Chem. 43, 18355 (2019)

    Article  CAS  Google Scholar 

  36. X. Chen, J. Ding, J. Jiang, G. Zhuang, Z. Zhang, P. Yang, RSC Adv. 8, 29488 (2018)

    Article  CAS  Google Scholar 

  37. D.H. Youn, J.-W. Jang, J.Y. Kim, J.S. Jang, S.H. Choi, J.S. Lee, Sci. Rep. 4, 5492 (2014)

    Article  CAS  Google Scholar 

  38. A. Naseri, M. Goodarzi, D. Ghanbari, J. Mater. Sci. Mater. Electron. 28, 17635 (2017)

    Article  CAS  Google Scholar 

  39. G. Solomon, R. Mazzaro, S. You, ACS Appl. Mater. Interfaces 11, 22380 (2019)

    Article  CAS  Google Scholar 

  40. B. Babu, R. Koutavarapu, J. Shim, K. Yoo, Mater. Sci. Semicond. Proc. 107, 104834 (2020)

    Article  CAS  Google Scholar 

  41. K. Zhang, Z. Mou, S. Cao, Int. J. Hydrogen Energy 47, 2967 (2022)

    Article  CAS  Google Scholar 

  42. N.R. Khalid, Z. Israr, M.B. Tahir, T. Iqbal, Int. J. Hydrogen Energy 45, 8479 (2020)

    Article  CAS  Google Scholar 

  43. R. Koutavarapu, B. Babu, C.V. Reddy, J. Environ. Manage. 265, 110504 (2020)

    Article  CAS  Google Scholar 

  44. L. Lin, Q. Zhu, A.-W. Xu, J. Am. Chem. Soc. 136, 11027 (2014)

    Article  CAS  Google Scholar 

  45. S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik, ACS Appl. Mater. Interfaces 9, 33766 (2017)

    Article  CAS  Google Scholar 

  46. H.-Y. Zhu, R. Jiang, Y.-Q. Fu, R.-R. Li, J. Yao, S.-T. Jiang, Appl. Surf. Sci. 369, 1 (2016)

    Article  CAS  Google Scholar 

  47. M.T.L. Lai, K.M. Lee, T.C.K. Yang, Nanoscale Adv. 3, 1106 (2021)

    Article  CAS  Google Scholar 

  48. H. Liu, T. Liu, X. Dong, Z. Zhu, Micro Nano Lett. 10, 435 (2015)

    Article  CAS  Google Scholar 

  49. Y. Zhao, C. Lin, H. Bi, Y. Liu, Q. Yan, Appl. Surf. Sci. 392, 701 (2017)

    Article  CAS  Google Scholar 

  50. S. Karmakar, S. Ghosh, P. Kumbhakar, J. Nanopart. Res. 22, 11 (2020)

    Article  CAS  Google Scholar 

  51. M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Appl. Surf. Sci. 258, 1587 (2011)

    Article  CAS  Google Scholar 

  52. X. Lin, X. Wang, Q. Zhou, A.C.S. Sustain, Chem. Eng. 7, 1673 (2019)

    CAS  Google Scholar 

  53. F. Guo, M. Li, H. Ren, Appl. Surf. Sci. 491, 88 (2019)

    Article  CAS  Google Scholar 

  54. W.-C. Peng, X.-Y. Li, Catal. Commun. 49, 63 (2014)

    Article  CAS  Google Scholar 

  55. G. Yang, B. Yang, T. Xiao, Z. Yan, Appl. Surf. Sci. 283, 402 (2013)

    Article  CAS  Google Scholar 

  56. X. Liu, Z. Xing, Y. Zhang, Appl. Catal. B 201, 119 (2017)

    Article  CAS  Google Scholar 

  57. K.H. Hu, X.G. Hu, Y.F. Xu, J.D. Sun, J. Mater. Sci. 45, 2640 (2010)

    Article  CAS  Google Scholar 

  58. R. Koutavarapu, K. Syed, S. Pagidi, Chemosphere 287, 132015 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C1004283). The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) at Yeungnam University.

Author information

Authors and Affiliations

Authors

Contributions

RA: conceptualization, methodology, data curation, visualization, investigation, writing—original draft, writing–review, and editing. BS: data curation, visualization, investigation, writing–review, and editing. THO: formal analysis, data curation, supervision, resources, writing, reviewing, and editing.

Corresponding authors

Correspondence to Raju Atla, Baji Shaik or Tae Hwan Oh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3414 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atla, R., Shaik, B. & Oh, T.H. NiFe2O4 nanoplates decorated on MoS2 nanosheets as an effective visible light-driven heterostructure photocatalyst for the degradation of methyl orange. J Mater Sci: Mater Electron 33, 24972–24985 (2022). https://doi.org/10.1007/s10854-022-09206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09206-5

Navigation