Skip to main content

Advertisement

Log in

Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p–n heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The noble metal-free ternary Fe3O4/MoS2/BiVO4 p–n heterojunctions photocatalyst were prepared via a simply hydrothermal method, which possessed the unique nanospheres-on-microspheres heterostructure. The Fe3O4/MoS2/BiVO4 composite photocatalyst exhibited higher photocatalytic degradation of tetracycline hydrochloride (TCH) than those of MoS2, BiVO4 under visible light irradiation (λ > 420 nm). Especially, when the Bi/Mo molar ratio reached 30:1 (FMB3), the FMB3 displayed the highest photocatalytic activity, which can degrade 83% TCH (20 mg/L) within 90 min. The enhanced photocatalytic activity of the ternary photocatalyst could be attributed to the energy band matching and reduction of the charge transfer resistance to promote the spatial separation and reduce the recombination of photogenerated charge carriers due to the formation of built-in electric field by p–n heterojunctions between MoS2 and BiVO4. Additionally, MoS2 can be used as cocatalyst to enhance the separation efficiency of BiVO4 catalyst carrier and thereby improving the photocatalytic activity. Furthermore, the photocatalyst displayed highly stable recycling performances, which can be separated rapidly with an external magnetic field and be reused for five cycles and remain 91.8% of the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.L. Wang, Y. Li, T. Sun, F. Mao, J.K. Wu, B. Xue, J. Mater. Sci. Mater. Electron. 30, 4446–4454 (2019)

    CAS  Google Scholar 

  2. Y.H. Chao, Y. Jin, W.J. Jiang, L.L. Chen, X.W. Li, J. Luo, J.Y. Pang, H.M. Li, W.S. Zhu, J. Chem. Technol. Biotechnol. 94, 3815–3824 (2019)

    CAS  Google Scholar 

  3. Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao, Environ. Sci. Technol. 49, 6772–6782 (2015)

    CAS  Google Scholar 

  4. Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Appl. Catal. B 254, 541–550 (2019)

    CAS  Google Scholar 

  5. R. Daghrir, P. Drogui, Environ. Chem. Lett. 11, 209–227 (2013)

    CAS  Google Scholar 

  6. M. Thaker, P. Spanogiannopoulos, G.D. Wright, Cell. Mol. Life Sci. 67, 419–431 (2010)

    CAS  Google Scholar 

  7. F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Sep. Purif. Technol. 228, 115770–115776 (2019)

    CAS  Google Scholar 

  8. H. Wu, Z.K. Zheng, C.Y. Toe, X.M. Wen, J.N. Hart, R. Amal, Y.H. Ng, J. Mater. Chem. A 8, 5638–5646 (2020)

    CAS  Google Scholar 

  9. P.M. Rao, L. Cai, C. Liu, I.S. Chong, H.L. Chi, J.M. Weisse, P.D. Yang, X.L. Zheng, Nano Lett. 14, 1099–1105 (2014)

    CAS  Google Scholar 

  10. H.Y. Li, Y. Sun, J. Cai, S.Y. Gan, D.X. Han, L. Niu, T.S. Wu, Appl. Catal. B 170, 206–214 (2015)

    Google Scholar 

  11. D.K. Zhong, S. Choi, D.R. Gamelin, J. Am. Chem. Soc. 133, 18370–18377 (2011)

    CAS  Google Scholar 

  12. L.Y. Zhang, Z.X. Dai, G.H. Zheng, Z.F. Yao, J.J. Mu, RSC Adv. 8, 10654–10664 (2018)

    CAS  Google Scholar 

  13. Z. Zhu, W.G. Hong, C.Y. Chen, R. Wu, J. Nanosci. Nanotechnol. 20, 2689–2697 (2020)

    CAS  Google Scholar 

  14. C. Regmi, Y. Kshetri, T. Kim, R. Pandey, S.W. Lee, Mol. Catal. 432, 220–231 (2017)

    CAS  Google Scholar 

  15. M. Zhang, C.C. Piao, D. Wang, Z.H. Zhang, J. Wang, Y.T. Song, Sep. Purif. Technol. 231, 115890 (2020)

    CAS  Google Scholar 

  16. C. Yaw, Q. Ruan, J. Tang, A. Soh, M. Chong, Chem. Eng. J. 364, 177–185 (2019)

    CAS  Google Scholar 

  17. X.Z. Yue, S.S. Yi, R.W. Wang, Z.T. Zhang, S.L. Qiu, Nano Energy 47, 463–473 (2018)

    CAS  Google Scholar 

  18. P. Zhang, X.W. Lou, Adv. Mater. 31, 1900281–1900298 (2019)

    Google Scholar 

  19. T. Soltani, A. Tayyebi, B. Lee, Catal. Today 340, 188–196 (2020)

    CAS  Google Scholar 

  20. S.P. Liu, J.L. Zhou, Y.J. Lu, J.Z. Su, Sol. Energy Mater. Sol. Cells 180, 123–129 (2018)

    CAS  Google Scholar 

  21. H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L.Z. Wang, R. Amal, Y.H. Ng, Adv. Mater. 32, 1904717–1904737 (2019)

    Google Scholar 

  22. C.C. Li, S.Y. Zhang, Y. Zhou, J.B. Li, J. Mater. Sci. Mater. Electron. 28, 9003–9010 (2017)

    CAS  Google Scholar 

  23. Z.W. Zhang, Q.H. Li, Q. Qiao, D.F. Hou, D.S. Li, Chin. J. Catal. 40, 371–379 (2019)

    CAS  Google Scholar 

  24. M.A. Khan, H.B. Zhao, W.W. Zou, Z. Chen, W.J. Cao, J.H. Fang, J.Q. Xu, L. Zhang, J.J. Zhang, Electron. Energy Rev. 1, 483–530 (2018)

    Google Scholar 

  25. F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Appl. Surf. Sci. 491, 88–94 (2019)

    CAS  Google Scholar 

  26. Q.G. Pan, C. Zhang, Y.J. Xiong, Q.X. Mi, D.D. Li, L.L. Zou, Q.H. Huang, Z.Q. Zou, H. Yang, ACS Sustain. Chem. Eng. 6, 6378–6387 (2018)

    CAS  Google Scholar 

  27. Y. Zhang, W.Q. Sun, X.H. Rui, B. Li, H.T. Tan, G.L. Guo, S. Madhavi, Y. Zong, Q.Y. Yan, Small 11, 3694–3702 (2015)

    CAS  Google Scholar 

  28. Y. Zeng, R. Hao, B.G. Xing, Y.L. Hou, Z.C. Xu, Chem. Commun. 46, 3920–3922 (2010)

    CAS  Google Scholar 

  29. C.Y. Lu, J.J. Dang, C.T. Hou, Y.J. Jiang, W.S. Guan, Desalin. Water. Treat. 104, 250–256 (2018)

    CAS  Google Scholar 

  30. X.X. Gao, H.B. Xu, J.L. Yu, J. Wang, Chem. Lett. 44, 1098–1100 (2015)

    CAS  Google Scholar 

  31. R.S. Xie, Y.L. Li, H.F. Liu, B.G. Guo, X.Q. Zhang, M.X. Song, Y.J. Ma, J. Alloys Compd. 765, 405–411 (2018)

    CAS  Google Scholar 

  32. W.J. Jo, H.J. Kang, K.J. Kong, Y.S. Lee, H. Park, Y. Lee, T. Buonassisid, K.K. Gleason, J.S. Lee, Proc. Natl. Acad. Sci. USA 45, 13774–13778 (2015)

    Google Scholar 

  33. Z. Li, Z. Zhou, J.W. Ma, Y. Li, W.C. Peng, G.L. Zhang, F.B. Zhang, X.B. Fan, Appl. Catal. B 237, 288–294 (2018)

    CAS  Google Scholar 

  34. L. Xi, Z.B. Jin, Z.X. Sun, R. Liu, L. Xu, Appl. Catal. A 536, 67–74 (2017)

    CAS  Google Scholar 

  35. W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.J. Shi, C. Yan, Appl. Surf. Sci. 473, 928–933 (2019)

    CAS  Google Scholar 

  36. M. Morales-Luna, S.A. Tomás, M.A. Arvizu, M. Pérez-González, E. Campos-Gonzalez, J. Alloys Compd. 722, 938–945 (2017)

    CAS  Google Scholar 

  37. M. Ponce-Mosso, M. Pérez-González, P.E. García-Tinoco, H. Crotte-Ledesma, M. Morales-Luna, S.A. Tomás, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.04.065

    Article  Google Scholar 

  38. N. Tian, H.W. Huang, Y. He, Y.X. Guo, T.R. Zhang, Y.H. Zhang, Dalton Trans. 44, 4297–4307 (2015)

    CAS  Google Scholar 

  39. J.Y. Liu, W.J. Fang, Z.D. Wei, Z. Qin, Z. Jiang, W.F. Shangguan, Catal. Sci. Technol. 8, 1375–1382 (2018)

    CAS  Google Scholar 

  40. M. Ou, Q. Zhong, S.L. Zhang, J. Sol-Gel Sci. Technol. 72, 443–454 (2014)

    CAS  Google Scholar 

  41. A. Hamdi, L. Boussekey, P. Roussel, A. Addad, H. Ezzaouia, R. Boukherroub, Y. Coffinier, Mater. Des. 109, 634–643 (2016)

    CAS  Google Scholar 

  42. X.L. Dong, Y. Shao, X.X. Zhang, H.C. Ma, X.F. Zhang, F. Shi, C. Ma, M. Xue, Res. Chem. Intermed. 40, 2953–2961 (2014)

    CAS  Google Scholar 

  43. S.W. Gao, C.S. Guo, S. Hou, L. Wan, Q. Wang, J.P. Lv, Y. Zhang, J.F. Gao, W. Meng, J. Xu, J. Hazard. Mater. 331, 1–12 (2017)

    CAS  Google Scholar 

  44. J.F. Guo, P.T. Li, Z. Yang, Catal. Commun. 122, 63–67 (2019)

    CAS  Google Scholar 

  45. N. Singh, G. Jabbour, U. Schwingenschlögl, Eur. Phys. J. B 85, 392 (2012)

    Google Scholar 

  46. L.L. Zhang, G.Q. Tan, S.S. Wei, H.J. Ren, A. Xia, Y.Y. Luo, Ceram. Int. 39, 8597–8604 (2013)

    CAS  Google Scholar 

  47. W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, Y.B. Tang, C.Y. Lu, Chem. Eng. J. 394, 125009–125018 (2020)

    CAS  Google Scholar 

  48. Y. Liu, J.J. Kong, J.L. Yuan, W. Zhao, X. Zhu, C. Sun, J.M. Xie, Chem. Eng. J. 331, 242–254 (2018)

    CAS  Google Scholar 

  49. J.B. Zhou, L.D. Jiang, D. Chen, J.H. Liang, L.S. Qin, L.Q. Bai, X.G. Sun, Y.X. Huang, J. Sol-gel Sci. Technol. 90, 535–546 (2019)

    CAS  Google Scholar 

  50. D.D. Chen, S.X. Wu, J.Z. Fang, S.Y. Lu, G.Y. Zhou, W.H. Feng, F. Yang, Y. Chen, Z.Q. Fang, Sep. Purif. Technol. 193, 232–241 (2018)

    CAS  Google Scholar 

  51. F. Guo, X.L. Huang, Z.H. Chen, H.J. Ren, M.Y. Li, L.Z. Chen, J. Hazard. Mater. 390, 122158–122169 (2020)

    CAS  Google Scholar 

  52. H.N. Che, J.B. Chen, H. Kai, H. Wei, H. Hao, X.T. Liu, G.B. Che, C.B. Liu, W.L. Shi, J. Alloys Compd. 688, 882–890 (2016)

    CAS  Google Scholar 

  53. X.Z. Lin, X. Wang, Q.W. Zhou, C.Y. Wen, S.Q. Su, J. Xiang, P.F. Cheng, X.B. Hu, Y. Li, X. Wang, X.S. Gao, R. Nözel, G.F. Zhou, Z. Zhang, J.M. Liu, ACS Sustain. Chem. Eng. 7, 1673–1682 (2019)

    CAS  Google Scholar 

  54. X. Lin, C. Liu, J.B. Wang, S. Yang, J. Shi, Y.Z. Hong, Sep. Purif. Technol. 226, 117–127 (2019)

    CAS  Google Scholar 

  55. L. Fang, Y.P. Xie, Y. Yang, B.Y. Zhu, Y.Y. Wang, M.X. Liu, K.N. Zhao, H.B. Zhao, J.J. Zhang, ACS Appl. Energy Mater. 3, 309–318 (2020)

    CAS  Google Scholar 

  56. X.R. Xu, X.H. Wang, S.J. Huo, Z.F. Chen, H.B. Zhao, J.Q. Xu, Catal. Today 318, 157–166 (2018)

    CAS  Google Scholar 

  57. F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, Inorg. Chem. Front. 7, 1770–1779 (2020)

    CAS  Google Scholar 

  58. W. Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, X.L. Yu, J. Nanopart. Res. 12, 1355–1366 (2010)

    CAS  Google Scholar 

  59. C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, J. Alloys Compd. 811, 151976 (2019)

    CAS  Google Scholar 

  60. F. Dong, Z.Y. Wang, Y.H. Li, W.K. Ho, S.C. Ho, Lee, Environ. Sci. Technol. 48, 10345–10353 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21906039, 21906072), Fundamental Research Funds for the Central Universities of Chang’an University (310829172002, 300102298104, 300102290501), Chang’an university students’ innovation program (201810710105), Natural Science Foundation of Shaanxi Province (2019JQ-382, 2019JM-429), the Natural Science Foundation of Jiangsu Province (BK20190982), Funding project for introduced overseas scholars of Hebei Province (C20190321), Program for water resources research and promotion of Hebei Province (2019-55), Doctoral research fund of Hebei Geo University (BQ2019041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Lu or Feng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yang, C., Sun, Z. et al. Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p–n heterojunction. J Mater Sci: Mater Electron 31, 16746–16758 (2020). https://doi.org/10.1007/s10854-020-04230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04230-9

Navigation