Skip to main content
Log in

Synthesis, physical, FTIR, and optical characteristics of B2O3·CaO·ZnO glasses doped with Nb2O5 oxide: Experimental investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The doping influence of niobium pentoxide (Nb2O5) on the structure, physical, FTIR, and optical properties of new synthesized glass systems of the calcium zinc borate glasses with chemical formula 60B2O3·25CaO·15ZnO·xNb2O5: 0 ≤ x ≤ 1 mol% has been investigated. The BCZNbx samples were synthesized using the melt quenching technique. XRD measurements were used to confirm the noncrystalline structure of the prepared glasses. The density (ρ) gradually increased from 3.261 to 3.312 g/cm3 and molar volume (Vm) from 20.849 to 21.335 cm3/mol for BCZNb0.0 to BCZNb1.0 glasses, respectively. The oxygen molar volume (OMV) reduced nonlinearly from 9.81 to 9.68 cm3/mol as the Nb2O5 mol% increasing followed a reverse trend of (ρ) and (Vm). The oxygen packing density (OPD) increased from 101.91 to 103.26 g.atom/l. The estimated optical band gap (\(E\) g) values were 3.66 (± 0.01), 3.61 (± 0.01), 3.57 (± 0.01), and 3.55 (± 0.01) eV for the 0 mol%, 0.2 mol%, 0.6 mol%, and 0.8 mol% of Nb2O5 contents, respectively. Values of linear refractive index (n0) showed a very slight increment from 2.26 to 2.29 with further additions Nb2O5, while nonlinear one (n2) showed an increase from 2.26 × 10–11 (at 0 mol% of Nb2O5 content) to 2.53 × 10–11 (at 0.8 mol% of Nb2O5 content). FTIR measurements reflected that relative fraction of BO4 (P4) decreases while relative fraction of BO3 (P3) increases by Nb2O5 doping. Such a result confirmed that the Nb ions cause a variation in borate structural coordination and partially back conversion from [BO4] to [BO3] units in the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Relevant research data are included in the text of the work.

References

  1. K. Annapoorani, C. Basavapoornima, N. Suriya Murthy, K. Marimuthu, Investigations on structural and luminescence behavior of Er3+ doped lithium zinc borate glasses for lasers and optical amplifier applications. J. Non Cryst. Solids 447, 273 (2016)

    Article  CAS  Google Scholar 

  2. M. Prokic, Lithium borate solid TL detectors. J. Radiat. Meas. 33, 393 (2001)

    Article  CAS  Google Scholar 

  3. I.N. Ogorodnikov, N.E. Poryvai, Thermoluminescence kinetics of lithium borate crystals. J. Lumin. 132, 1318 (2012)

    Article  CAS  Google Scholar 

  4. B. Alshahrani, Z.A. Alrowaili, S.J. Alsufyani, I.O. Olarinoye, C. Mutuwong, M.S. Al- Buriahi, Determining the optical properties and simulating the radiation shielding parameters of Dy3+ doped lithium yttrium borate glasses. Optik 250, 68318 (2022)

    Article  Google Scholar 

  5. Y.S. Rammah, F.I. El-Agawany, I.A. El-Mesady, Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2. Appl. Phys. A 125, 727 (2019)

    Article  Google Scholar 

  6. A.M. Ali, Y.S. Rammah, M.I. Sayyed, H.H. Somaily, H. Algarni, M. Rashad, The impact of lead oxide on the optical and gamma shielding properties of barium borate glasses. Appl. Phys. A 126, 280 (2020)

    Article  CAS  Google Scholar 

  7. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2 –B2O3 –ZnO–Li2O3 –Bi2O3. Ceram. Int. 47, 611 (2021)

    Article  CAS  Google Scholar 

  8. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Technol. 13, 1363 (2021)

    Article  CAS  Google Scholar 

  9. H.M. Zakaly, A.S. Abouhaswa, S.A.M. Issa, M.Y.A. Mostafa, M. Pyshkina, R. El-Mallawany, Optical and nuclear radiation shielding properties of zinc borate glasses doped with lanthanum oxide. J. Non. Cryst. Solids. 543, 120151 (2020)

    Article  CAS  Google Scholar 

  10. H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, M. Rashad, A.I. Elazaka, H.O. Tekin, Y.B. Saddeek, Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: Experimental and numerical analyses. Ceram. Int. 47, 5587–5596 (2021)

    Article  CAS  Google Scholar 

  11. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Opt. Mater. (Amst.) 114, 110942 (2021)

    Article  CAS  Google Scholar 

  12. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa, M. Pyshkina, R. El-Mallawany, M.Y.A. Mostafa, Lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors. J. Mater. Sci. Mater. Electron. 31, 14494–14501 (2020)

    Article  CAS  Google Scholar 

  13. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, S.A.M. Issa, H.O. Tekin, W.S. AbuShanab, Y.B. Saddeek, Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results Phys. 21, 103839 (2021)

    Article  Google Scholar 

  14. H.O. Tekin, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, A. Badawi, G. Bilal, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, Cadmium oxide reinforced 46V2O5–46P2O5–(8–x)B2O3–xCdO semiconducting oxide glasses and resistance behaviors against ionizing gamma rays. J. Mater. Res. Technol. 13, 2336–2349 (2021)

    Article  CAS  Google Scholar 

  15. U. Gökhan Kilic, Gökhan Issever, Erkan Ilik, Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. J. Non-Cryst. Solids 527, 119747 (2020)

    Article  Google Scholar 

  16. E. Ilik, E. Kavaz, G. Kilic, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties. Ceram. Int. 48, 6780–6791 (2022)

    Article  CAS  Google Scholar 

  17. F.I. El Gokhan Kilic, B.O. Agawany, K.A.M. Ilik, Y.S. Erkan, Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: Fabrication, physical, structural characterization, and radiation shielding efficacy. Opt. Mater. 112, 110757 (2021)

    Article  Google Scholar 

  18. G. Kilic, K.A. Erkan Ilik, R. Mahmoud, F.I. El-Mallawany, Y.S.R. El-Agawany, Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5– P2O5–B2O3: Physical, thermal, and nuclear radiation shielding properties. Ceram. Int. 46, 19318–19327 (2020)

    Article  CAS  Google Scholar 

  19. M.H. Misbah, H. Doweidar, R. Ramadan, M. El-Kemary, Tailoring the structure and properties of iron oxide nanoparticles through the oxygen species of borate glass matrix. J. Non-Cryst. Solids 545, 120241 (2020)

    Article  CAS  Google Scholar 

  20. M. Shaalan, G. El-Damrawi, A. Hassan, M.H. Misbah, Structural role of Nd2O3 as a dopant material in modified borate glasses and glass ceramics. J. Mater. Sci.: Mater. Electron. 32, 12348–12357 (2021)

    CAS  Google Scholar 

  21. M. Misbah, A. Abdelghany, F. El-Agawany, Y. Rammah, R. El-Mallawany, On Y2O3· Li2O· Al2O3· B2O3 glasses: synthesis, structure, physical, optical characteristics and gamma-ray shielding behavior. J. Mater. Sci.: Mater. Electron. 32, 16242–16254 (2021)

    CAS  Google Scholar 

  22. M.H. Misbah, M. El-Kemary, R. Ramadan, Effect of Mg2+ coordination on the structural and optical properties of iron magnesium phosphate glasses. J. Non-Cryst. Solids 569, 120987 (2021)

    Article  CAS  Google Scholar 

  23. A.M. Abdel-Aziz, R. Elsad, E.M. Ahmed, Y. Rammah, M. Shams, M. Misbah, Synthesis, physical, ultrasonic waves, mechanical, FTIR, and dielectric characteristics of B2O3/Li2O/ZnO glasses doped with Y3+ ions. J. Mater. Sci.: Mater. Electron. 33, 6603–6615 (2022)

    CAS  Google Scholar 

  24. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022)

    Article  CAS  Google Scholar 

  25. H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, Y.S. Rammah, A.M.A. Henaish, Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: Experimental and simulation studies. Radiat. Phys. Chem. 191, 109837 (2022)

    Article  CAS  Google Scholar 

  26. A.S. Abouhaswa, F.I. El-Agawany, E.M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922 (2022)

    Article  CAS  Google Scholar 

  27. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055 (2020)

    Article  CAS  Google Scholar 

  28. T. Komatsu, T. Honma, T. Tasheva, V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review. J. Non-Cryst. Solids 581, 121414 (2022)

    Article  CAS  Google Scholar 

  29. A.M. Norah, Y.S. Alsaif, I.O. Rammah, E.M. Olarinoye, A.S. Ahmed, B2O3/PbO/Na2O/MgO/Nb2O5 glasses: fabrication, physical, optical characteristics as well as photons/neutrons/beta particles attenuation capacities. Opt Quant Electron 54, 588 (2022)

    Article  Google Scholar 

  30. A. Masuno, H. Inoue, K. Yoshimoto, Y. Watanabe, Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses. Opt. Mater. Express 4, 710–718 (2014)

    Article  CAS  Google Scholar 

  31. A.M. Shams, M.R. Issa, M.H. Hesham, H.O. Zakaly, A.S. Tekin, Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. J Mater Sci: Mater Electron 31, 22039–22056 (2020)

    Google Scholar 

  32. S. Sanghi, S. Rani, A. Agarwal, V. Bhatnagar, Influence of Nb2O5 on the structure, optical and electrical properties of alkaline borate glasses. Mater. Chem. Phys. 120, 381–386 (2010)

    Article  CAS  Google Scholar 

  33. G. Senthil Murugan, Y. Ohishi, TeO2–BaO–SrO–Nb2O5 glasses: a new glass system for waveguide devices applications. J. Non-Crystalline Solids 341, 86–92 (2004)

    Article  CAS  Google Scholar 

  34. H.M.H. Zakaly, H.O. Tekin, S.A.M. Issa, A.M.A. Henaish, E.M. Ahmed, Y.S. Rammah, Fabrication, physical, structure characteristics, neutron and radiation shielding capacity of high-density neodymio-cadmium lead-borate glasses: Nd2O3/CdO/PbO/B2O3/Na2O. Appl. Phys. A 128, 551 (2022)

    Article  CAS  Google Scholar 

  35. L. Pauling (1940) The nature of the chemical bond and the structure of molecules and crystals. 2nd, ed. Cornell University Press, Ithaca

  36. M.S. Sadeq, B.O. El-bashir, A.H. Almuqrin, M.I. Sayyed, The tungsten oxide within phosphate glasses to investigate the structural, optical, and shielding properties variations. J. Mater. Sci. Mater. Electron 32, 12402–12413 (2021)

    Article  CAS  Google Scholar 

  37. M.S. Sadeq, A. Ibrahim, The path towards wide-bandgap and UV-transparent lithium phosphate glasses doped with cobalt oxide for optical applications. J. Non-Cryst. Solids 569, 120983 (2021)

    Article  CAS  Google Scholar 

  38. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, UK, 2012)

    Google Scholar 

  39. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8(1972), 569–585 (1972)

    Article  Google Scholar 

  40. H.Y. Morshidy, M.S. Sadeq, Influence of cobalt ions on the structure, phonon emission, phonon absorption and ligand field of some sodium borate glasses. J. Non-Cryst. Solids 525, 119666–119671 (2019)

    Article  CAS  Google Scholar 

  41. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides glasses in terms of the electronic ion polarizability and average single bond strength (Review). J. Univ. Chem. Technol. Metall. 45(3), 219–250 (2010)

    CAS  Google Scholar 

  42. V. Dimitrov, T. Komatsu, Electronic polarizability, optical basicity and nonlinear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 160–179 (1999)

    Article  CAS  Google Scholar 

  43. S.F. Mansour, S. Wageh, M.F. Alotaibi, M.A. Abdo, M.S. Sadeq, Impact of bismuth oxide on the structure, optical features and ligand field parameters of borosilicate glasses doped with nickel oxide. Ceram. Int. 47, 21443–21449 (2021)

    Article  CAS  Google Scholar 

  44. V. Thakur, A. Thakur, L. Kaur, Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60–71 (2019)

    Article  CAS  Google Scholar 

  45. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Technol. 13, 1363–1373 (2021)

    Article  CAS  Google Scholar 

  46. A.M. Abdel-Aziz, M.S. Shams, E.M. Ahmed, Y.S. Rammah, R.A. Elsad, Fabrication, physical, FTIR, ultrasonic waves, and mechanical properties of quaternary B2O3–Bi2O3–NaF–ZrO2 glasses: Experimental study. Appl. Phys. A 128, 1–11 (2022)

    Article  Google Scholar 

  47. A. Aronne, S. Esposito, P. Pernice, FTIR and DTA study of structural transformations and crystallisation in BaO-B2O3-TiO2 glasses. Phys Chem Glasses 40(2), 63–68 (1999)

    CAS  Google Scholar 

  48. L. Galeener Frank, G. Lucovsky, J.C. Mikkelsen, Vibrational spectra and the structure of pure vitreous B2O3. J. Phys. Rev. B 22(8), 3983 (1980)

    Article  Google Scholar 

  49. W.A. Pisarski, T. Goryczka, B. Wodecka-Dus, M. Płonska, Structure and properties of rare earth-doped lead borate glasses. Mater Sci Eng B 122, 94–99 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman, University Researchers Supporting Project (Grant No. PNURSP2022R60) and Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Z.Y. Khattari acknowledges the financial support from the Hashemite University.

Funding

Princess Nourah Bint Abdulrahman University, PNURSP2022R60, Norah Alsaif.

Author information

Authors and Affiliations

Authors

Contributions

YSR, NAMA, ZYK, MSS, RAE, and MSS contributed to conceptualization, methodology, software, validation, investigation, data curation, writing, reviewing, and editing of the manuscript, visualization, and supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Alsaif, N.A.M., Khattari, Z.Y. et al. Synthesis, physical, FTIR, and optical characteristics of B2O3·CaO·ZnO glasses doped with Nb2O5 oxide: Experimental investigation. J Mater Sci: Mater Electron 33, 23749–23760 (2022). https://doi.org/10.1007/s10854-022-09133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09133-5

Navigation