Skip to main content
Log in

Fabrication, physical, structure characteristics, neutron and radiation shielding capacity of high-density neodymio-cadmium lead-borate glasses: Nd2O3/CdO/PbO/B2O3/Na2O

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-density glasses of neodymio-cadmium lead borate of chemical composition xNd2O3/20CdO/20PbO/(57-x)B2O3/3Na2O, where (0 (0Nd) ≤ x ≤ 5 (5Nd) wt%) have been fabricated by a melt quenching process. Physical, structure properties as well as gamma-radiation and neutron shielding effectiveness in wide photon energy range 0.015–15 MeV have been examined. The amorphous nature of xNd-glasses was confirmed, where there was a lack of their crystallinity. Density was gradually increased from 5.006 g/cm3 for 0Nd-glass sample to 5.245 g/cm3 for 5Nd-glass sample. In terms of the mass attenuation coefficient (MAC), introducing Nd3+ ions in the glass matrix has a direct constructive influence on the obtained values of MAC. Generally, the MAC trend follows the order (MAC)5Nd > (MAC)4Nd > (MAC)3Nd > (MAC)2Nd > (MAC)1Nd > (MAC)0Nd. The linear attenuation coefficient (LAC) has a similar trend as MAC for all xNd-glasses. In terms of the half-value layer (T1/2), the 5Nd-glasses possessed the minimum T1/2 values (0.004 cm at 15 keV to 4.301 cm at 15 MeV). Therefore, the T1/2 of the fabricated xNd-glasses has an inverse behavior of the MAC and LAC. Thus, (T1/2)0Nd > (T1/2)1Nd > (T1/2)2Nd > (T1/2)3Nd > (T1/2)4Nd > (T1/2)5Nd. The effective atomic number (Zeff) parameter follows the order (Zeff)5Nd > (Zeff)4Nd > (Zeff)3Nd > (Zeff)2Nd > (Zeff)1Nd > (Zeff)0Nd. In the energies preferred for radiation applications, 5Nd-glasses possess very low exposure (EBF) and energy absorption (EABF) buildup factor values. The fast neutron removal cross-section (FNRC) of the fabricated glasses is improved as the Nd3+ content increases in the glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica. B 581, 411946 (2020)

    Article  Google Scholar 

  2. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125(10), 717 (2019)

    Article  ADS  Google Scholar 

  3. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.049

    Article  ADS  Google Scholar 

  4. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96(2014), 153–157 (2014). https://doi.org/10.1016/j.radphyschem.2013.09.015

    Article  ADS  Google Scholar 

  5. M.A. Marzouk, H.A. ElBatal, A.M. Abdelghany, F.M. Ezz Eldin, Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. J. Mol. Struct 997(1–3), 94–102 (2011)

    Article  ADS  Google Scholar 

  6. F.H. El-Batal, E.M. Khalil, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. SILICON 2(1), 41–47 (2010)

    Article  Google Scholar 

  7. W.I. Mortada, I.M.M. Kenawy, A.M. Abdelghany, A.M. Ismail, A.F. Donia, K.A. Nabieh, Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater. Sci. Eng., C 52, 288–296 (2015)

    Article  Google Scholar 

  8. A.H. Hammad, A.M. Abdelghany, Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J. Non-Cryst. Solids 433, 14–19 (2016)

    Article  ADS  Google Scholar 

  9. A.M. Abdelghany, Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: Synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

    Article  Google Scholar 

  10. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram. Int. 46, 23134–23144 (2020). https://doi.org/10.1016/j.ceramint.2020.06.093

    Article  Google Scholar 

  11. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

    Article  ADS  Google Scholar 

  12. F.I. El-Agawany, E. Kavaz, U. Perişanoğlu, M.S. Al-Buriahi, Y.S. Rammah, Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A 125(12), 838 (2019)

    Article  ADS  Google Scholar 

  13. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma shielding features of bismuth borate glasses. Appl. Phys. A 124, 824–832 (2018)

    Article  ADS  Google Scholar 

  14. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.S. Abdel-Aziz, M.A. Morsi, Effect of gamma-irradiation on biosynthesized gold nanoparticles using chenopodium murale leaf extract. J. Saudi Chem. Soc. 21(5), 528–537 (2017)

    Article  Google Scholar 

  15. E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. SILICON 2(1), 49–60 (2010)

    Article  Google Scholar 

  16. A.M. Abdelghany, The elusory role of low level doping transition metals in lead silicate glasses. SILICON 2(3), 179–184 (2010)

    Article  Google Scholar 

  17. K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul, P. Limsuwan, Gamma-rays shielding properties of xPbO:(100–x)B2O3 glasses system at 662 keV. Ann. Nucl. Energy. 36, 1360–1365 (2009)

    Article  Google Scholar 

  18. P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy. 68, 4–9 (2014)

    Article  Google Scholar 

  19. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nanometal oxides. J. Non. Cryst. Solids. 528, 119754 (2020)

    Article  Google Scholar 

  20. A.M.A. Henaish, H.M.H. Zakaly, H.A. Saudi, A.M. Issa. Shams, H.O. Tekin, M.M. Hessein, Y.S. Rammah, Thermal and optical characteristics of synthesized sand/CeO2 glasses: Experimental approach. J. Electron. Mater 2022, 1–7 (2022)

    Google Scholar 

  21. G. Kilic, Role of Nd3+ ions in TeO2-V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization. J Mater Sci: Mater Electron 31, 12892–12902 (2020)

    Google Scholar 

  22. Y.S. Rammah, A.A. Ali, R. El-Mallawany, A.M. Abdelghany, Optical properties of bismuth borotellurite glasses doped with NdCl3. J. Mol. Struct. 1175, 504–511 (2019). https://doi.org/10.1016/j.molstruc.2018.07.071

    Article  ADS  Google Scholar 

  23. Ahmed M. Abdel-Aziz, R.A. Elsad, Emad M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, Physical, FTIR, ultrasonic, and dielectric characteristics of calcium lead-borate glasses mixed by Nd2O3/Er2O3 rare earths: experimental study. J. Mater. Sci: Mater Electron 32, 19966–19979 (2021). https://doi.org/10.1007/s10854-021-06521-1

    Article  Google Scholar 

  24. K.M. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B 577, 411756 (2020). https://doi.org/10.1016/j.physb.2019.411756

    Article  Google Scholar 

  25. H.H. Hegazy, M.S. Al-Buriahi, F.I. Faisal Alresheedi, C.S. El-Agawany, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: Theoretical and simulation studies. Ceram Int 47, 2772–2780 (2021). https://doi.org/10.1016/j.ceramint.2020.09.131

    Article  Google Scholar 

  26. Y.S. Rammah, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, H.A. Saudi, A.M.A. Henaish, Fabrication, physical, structural, and optical investigation of cadmium lead-borate glasses doped with Nd3+ ions: An experimental study. J. Mater. Sci: Mater. Electron. 33, 1877–1887 (2022). https://doi.org/10.1007/s10854-021-07387-z

    Article  Google Scholar 

  27. H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, H.A. Ali Badawi, A.M.A. Saudi, Y.S.R. Henaish, An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater. Res. Bull. 151, 111828 (2022)

    Article  Google Scholar 

  28. G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, P.R. Sala, The FLUKA code: Description and benchmarking AIP conference proceedings. AIP (2007). https://doi.org/10.1063/1.2720455

    Article  Google Scholar 

  29. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.10.023

    Article  Google Scholar 

  30. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Opt. Mater. (Amst). 114, 110942 (2021). https://doi.org/10.1016/j.optmat.2021.110942

    Article  Google Scholar 

  31. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2069-4

    Article  Google Scholar 

  32. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat Phys Chem 190, 109819 (2022). https://doi.org/10.1016/j.radphyschem.2021.109819

    Article  Google Scholar 

  33. H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, Y.S. Rammah, A.M.A. Henaish, Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: Experimental and simulation studies. Radiat. Phys. Chem. 191, 109837 (2022). https://doi.org/10.1016/j.radphyschem.2021.109837

    Article  Google Scholar 

  34. A.S. Abouhaswa, F.I. El-Agawany, Emad M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922 (2022). https://doi.org/10.1016/j.radphyschem.2021.109922

    Article  Google Scholar 

  35. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, XCOM: photon cross sections database. NIST Stand. Ref. Database 8, 87–3597 (1998)

    Google Scholar 

  36. E. Şakar, E., Ö. F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem 166, 108496 (2020)

    Article  Google Scholar 

  37. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    Article  Google Scholar 

  38. I. Kashif, A. Ratep, S.K. El-Mahy, Structural and optical properties of lithium tetraborate glasses containing chromium and neodymium oxide. Mater. Res. Bull. 89, 273–279 (2017). https://doi.org/10.1016/j.materresbull.2017.02.006

    Article  Google Scholar 

  39. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  40. V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem 41, 276–283 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, visualization.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaly, H.M.H., Tekin, H.O., Issa, S.A.M. et al. Fabrication, physical, structure characteristics, neutron and radiation shielding capacity of high-density neodymio-cadmium lead-borate glasses: Nd2O3/CdO/PbO/B2O3/Na2O. Appl. Phys. A 128, 551 (2022). https://doi.org/10.1007/s00339-022-05689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05689-5

Keywords

Navigation