Skip to main content
Log in

Thin films of graphene decorated with NiS2 hybrid sensor for detection of NO2 gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we demonstrate the improved NO2 gas-sensing properties based on graphene-decorated NiS2 thin film. The grown NiS2 thin film, graphene was spread over NiS2 thin film by chemical vapour deposition (CVD) method. The formation of several p–n heterojunctions is greatly affected by the current–voltage relation of graphene-decorated NiS2 thin film due to p-type and n-type nature of graphene and NiS2, respectively. Initially with graphene decoration on NiS2 thin film, current decreases in comparison to NiS2 thin film, whereas depositing graphene film on glass substrate, current increases drastically. The NO2 gas sensor device is fabricated and its basic characteristics are systematically investigated. The incorporated graphene improves the NO2 sensing response of 97% with compared to bare NiS2 sensor (29%) at 100 ppm NO2 concentration with a practical detection limit below 0.2 ppm. In addition, the recovery time was shortened to a few seconds and the excellent repeatability. This work may provide a promising and practical method to mass produce room-temperature NO2 gas sensors for real-time environment monitoring due to its simple fabrication process, low cost, and practicality. The high-sensing response of NiS2/graphene is attributed to the formation and modulation of p–n heterojunction at the interface of graphene and NiS2. In addition, the presence of active sites graphene surface also enhances the sensing response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. N. Yamazoe, N. Miura, Environmental gas sensing. Sens. Actuators B 20, 95–102 (1994)

    Article  CAS  Google Scholar 

  2. L. Duk-Dong, L. Dae-Sik, Environmental gas sensors. IEEE Sens. J. 1, 214–224 (2001)

    Article  Google Scholar 

  3. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469 (2010)

    Article  CAS  Google Scholar 

  4. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu et al., Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  5. D. Chen, Yu. Wencheng, L. Wei, J. Ni, H. Li, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, High sensitive room temperature NO2 gas sensor based on the avalanche breakdown induced by Schottky junction in TiO2–Sn3O4 nanoheterojunctions. J. Alloy. Compd. 912, 165079 (2022)

    Article  CAS  Google Scholar 

  6. S. Rani, M. Kumar, H. Sheoran, R. Singh, V. Nand Singh, Rapidly responding room temperature NO2 gas sensor based on SnSe nanostructured film. Mater. Today Commun. 30, 103135 (2022)

    Article  CAS  Google Scholar 

  7. H.S. Hong, N.H. Ha, D.D. Thinh, N.H. Nam, N.T. Huong, N.T. Hue, T.V. Hoang, Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network. Nano Energy 87, 106165 (2021)

    Article  CAS  Google Scholar 

  8. A.A. Kabure, B.S. Shirke, S.R. Mane, K.M. Garadkar, Microwave-assisted sol-gel synthesis of CeO2–NiO nanocomposite based NO2 gas sensor for selective detection at lower operating temperature. J. Indian Chem. Soc. 99, 100369 (2022)

    Article  CAS  Google Scholar 

  9. H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019)

    Article  CAS  Google Scholar 

  10. Y. Su, G. Xie, H. Tai, S. Li, B. Yang, S. Wang, Q. Zhang, H. Du, H. Zhang, X. Du, Y. Jiang, Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 47, 316–324 (2018)

    Article  CAS  Google Scholar 

  11. S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li, N. Tran, Z. Li, Y. Xiong, M.E. Zaghloul, Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019)

    Article  Google Scholar 

  12. H. Li, W. Xie, B. Liu, C. Wang, Y. Wang, X. Duan, Q. Li, T. Wang, Gas modulating effect in room temperature ammonia sensing. Sensor. Actuator. B 242, 404 (2017)

    Article  CAS  Google Scholar 

  13. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185, 213 (2018)

    Article  Google Scholar 

  14. G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sensor. Actuator. B 107, 209 (2005)

    Article  CAS  Google Scholar 

  15. Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3, 1764 (2012)

    Article  CAS  Google Scholar 

  16. S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)

    Article  Google Scholar 

  17. L. Calderón-Garcidueñas, B. Azzarelli, H. Acuna, R. Garcia, T.M. Gambling, N. Osnaya, S. Monroy, M.R. Del Tizapantzi, J.L. Carson, A. Villarreal-Calderon, B. Rewcastle, Air pollution and brain damage. Toxicol. Pathol. 30, 373–389 (2002)

    Article  Google Scholar 

  18. Y. Liu, J. Parisi, X. Sun, Y. Lei, Solid-state gas sensors for high temperature applications—a review. J. Mater. Chem. A 2, 9919–9943 (2014)

    Article  CAS  Google Scholar 

  19. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives Sens. Actuators B 171, 25–42 (2012)

    Article  Google Scholar 

  20. M.W. Nomani, R. Shishir, M. Qazi, D. Diwan, V. Shields, M. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sensor. Actuator. B 150, 301 (2010)

    Article  CAS  Google Scholar 

  21. G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5, 1154 (2011)

    Article  CAS  Google Scholar 

  22. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196, 4873–4885 (2011)

    Article  CAS  Google Scholar 

  23. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  24. G.J. Hu, C. Xu, Z.H. Sun, S.G. Wang, H.M. Cheng, F. Li, W.C. Ren, 3D graphene foam- reduced-graphene-oxide hybrid nested hierarchical networks for high performance Li–S batteries. Adv. Mater. 28, 1603–1609 (2016)

    Article  CAS  Google Scholar 

  25. M.M. Rahman, J. Ahmed, A.M. Asiri, I.A. Siddiquey, M.A. Hasnat, Development of 4-methoxyphenol chemical sensor based on NiS2 -CNT nanocomposites. J. Taiwan Inst. Chem. Eng. 000, 1–9 (2016)

    Google Scholar 

  26. J.S. Anand, R.K.M. Rajan, A.A.M. Zaidan, Electro synthesized NiS2 thin films and their optical and semiconductor studies. Rep. Electrochem. 3, 25–29 (2013)

    Google Scholar 

  27. L.P. Mgabi, B.S. Dladla, M.A. Malik, S.S. Garje, J. Akhtar, N. Revaprasadu, Deposition of cobalt and nickel sulfide thin films from thio- and alkylthiourea complexes as precursors via the aerosol assisted chemical vapour deposition technique. Thin Solid Films 564, 51–57 (2014)

    Article  CAS  Google Scholar 

  28. X. Ke, G. –z. Hao, Y. –b. Rong, X. Zhou, J. Liu, L. Xiao, W. Jian, A facile approach to the hydrothermal synthesis of graphene Proceedings of the 16th International Conference on Nanotechnology Sendai, Japan, August 22–25, 2016

  29. R. Siburian, H. Sihotanh, S. LumbanRaja, M. Supeno, C. Simanjuntak, New route to synthesize of graphene nano sheets. Orient. J. Chem. 34, 182–187 (2020)

    Article  Google Scholar 

  30. S.L. Yang, H.B. Yao, M.R. Gao, S.H. Yu, Monodisperse cubic pyrite NiS2 do- decahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. Cryst. Eng. Commun. 11, 1383 (2009)

    Article  CAS  Google Scholar 

  31. C. Marini, B. Joseph, S. Caramazza, F. Capitani, M. Bendele, M. Mitrano, D. Chermisi et al., Local disorder investigation in NiS2-XSex using raman and Ni K-Edge X-ray absorption spectroscopies. J. Phys. Condens. Mater. 26, 1–8 (2014)

    Article  Google Scholar 

  32. X. Li, J. Wang, D. Xie, Xu. Jianlong, Yi. Xia, L. Xiang, S. Komarneni, Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett. 189, 42–45 (2017)

    Article  CAS  Google Scholar 

  33. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B 207, 602–613 (2015)

    Article  CAS  Google Scholar 

  34. L. Yu, F. Guo, S. Liu, J. Qi, M. Yin, B. Yang, Z. Liu, X. Fan, Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties. Mater. Lett. 183, 122–126 (2016)

    Article  CAS  Google Scholar 

  35. N. Tammanoon, A. Wisitsoraat, C. Sriprachuabwong, D. Phokharatkul, A. Tuantranont, S. Phanichphant, C. Liewhiran, Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl. Mater. Interfaces. 7, 24338–24352 (2015)

    Article  CAS  Google Scholar 

  36. G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci 107, 100591 (2019)

    Article  Google Scholar 

  37. G. Greczynski, L. Hultman, Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 451, 99–103 (2018)

    Article  CAS  Google Scholar 

  38. J. He, L. Chen, Z.Q. Yi, C.T. Au, S.F. Yin, CdS nanorods coupled with WS2 nanosheets for enhanced photocatalytic hydrogen evolution activity. Ind. Eng. Chem. Res. 55, 8327–8333 (2016)

    Article  CAS  Google Scholar 

  39. S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015)

    Article  CAS  Google Scholar 

  40. J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang et al., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9, 10313–10323 (2015)

    Article  CAS  Google Scholar 

  41. Y. Han, Da. Huang, Y. Ma, G. He, Hu. Jun, J. Zhang, Hu. Nantao, Su. Yanjie, Z. Zhou, Y. Zhang, Z. Yang, Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10, 22640–22649 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding received from any other institutions.

Author information

Authors and Affiliations

Authors

Contributions

RS, AG, BAA: study conceptualization and writing (original draft) the manuscript. SM, JD: data curation, formal analysis and writing (review & editing), and funding acquisition and project administration.

Corresponding author

Correspondence to J. Dineshkumar.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1817 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, R., Geetha, A., Anandh, B.A. et al. Thin films of graphene decorated with NiS2 hybrid sensor for detection of NO2 gas. J Mater Sci: Mater Electron 33, 23404–23417 (2022). https://doi.org/10.1007/s10854-022-09101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09101-z

Navigation