Skip to main content

Advertisement

Log in

In3+-doped CuS thin films: physicochemical characteristics and photocatalytic property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting Indium-doped copper sulfide thin films were deposited on glass substrate by a simple and economical chemical bath deposition technique. The depositions were carried out for 40 min. The electrical studies namely resistivity, resistance, and sheet resistance of CuS and CuS: In were carried out using four-point probe apparatus. The structural, optical, and morphological characterization were studied and compared with those of CuS: In with the bare CuS thin films. XRD studies confirmed that all the prepared thin films have the hexagonal structure of copper sulfide without any secondary phase after doping and the crystallite size was found to be decrease from 69 to 53 nm. Optical absorption analysis of samples shows a red-shift in the band edge of In: CuS thin films relative to CuS film so that the bandgap energy was decreased from 1.95 eV to 1.86 eV. The functional groups present in the CuS and In: CuS samples were confirmed by FTIR and FT-Raman frequency assignments. Morphological studies of CuS and CuS: In are interpreted using SEM and constituents present in the prepared thin films are viewed by EDS. Further the photocatalytic properties of the prepared films were studied by degrading methylene blue (MB) and rhodamine B (RhB) textile dyes. Maximum degradation efficiency achieved by the photocatalyst is to be 95% and 93% respectively for MB and RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Effect of annealing on the electrical properties of CuxS thin films. Proc. Chem. 19, 15–20 (2016)

    Article  CAS  Google Scholar 

  2. C. Ghosh, B.P. Varma, Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films 60(1), 61–65 (1979)

    Article  CAS  Google Scholar 

  3. C. Deng, X. Ge, H. Hu, L. Yao, C. Han, D. Zhao, Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16, 2738 (2014)

    Article  CAS  Google Scholar 

  4. M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16, 5290 (2014)

    Article  CAS  Google Scholar 

  5. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Synthesis of flower-like CuS hollow microspheres based on nano flakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015)

    Article  CAS  Google Scholar 

  6. W. Zhang, X. Wen, S. Yang, Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nano layers of polypyrrole. Langmuir 19, 4420–4426 (2003)

    Article  CAS  Google Scholar 

  7. Y. Wang, F. Liu, Y. Ji, M. Yang, W. Liu, W. Wang, Q. Sun, Z. Zhang, X. Zhao, X. Liu, Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans. 44, 10431–10437 (2015)

    Article  CAS  Google Scholar 

  8. H. Lin, T. Li, B.J. Janani, A. Fakhri, Fabrication of Cu2MoS4 decorated WO3 nano heterojunction embedded on chitosan: Robust photocatalytic efficiency, antibacterial performance, and bacteria detection by peroxidase activity. J. Photochem. Photobiol. B 226, 112354 (2022)

    Article  CAS  Google Scholar 

  9. S. Xiao, A. Fakhri, B.J. Janani, Synthesis of spinel Tin ferrite decorated on Bismuth ferrite nanostructures for synergetic photocatalytic, superior drug delivery, and antibacterial efficiencies. Surf. Interfaces 27, 101490 (2021)

    Article  CAS  Google Scholar 

  10. N. Zhang, S. Qiao, H. Wu, A. Fakhri, V.K. Gupta, Sustainable nano-composites polyglutamic acid functionalized Ag/g-C3N4/SiC for the ultrasensitive colorimetric assay, visible light irradiated photocatalysis and antibacterial efficiency. Opt. Mater. 120, 111452 (2021)

    Article  CAS  Google Scholar 

  11. Y. Liu, Z. Xu, S. Zhu, A. Fakhri, V.K. Gupta, Evaluation of synergistic effect of polyglycine functionalized gold/iron doped silver iodide for colorimetric detection, photocatalysis, drug delivery and bactericidal applications. J. Photochem. Photobiol. A 422, 113522 (2022)

    Article  CAS  Google Scholar 

  12. A. Bahadoran, M. Najafizadeh, Q. Liu, J.R. De Lile, D. Zhang, S. Masudy-Panah, V.K. Gupta, Co-doping silver and iron on graphitic carbon nitride-carrageenan nanocomposite for the photocatalytic process, rapidly colorimetric detection and antibacterial properties. Surf. Interfaces 26, 101279 (2021)

    Article  CAS  Google Scholar 

  13. Y. Cai, F. Yang, L. Wu, Y. Shu, G. Qu, A. Fakhri, V.K. Gupta, Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Mater. Chem. Phys. 258, 123919 (2021)

    Article  CAS  Google Scholar 

  14. A. Bahadoran, N.B. Baghbadorani, J.R. De Lile, S. Masudy-Panah, B. Sadeghi, J. Li, A. Fakhri, Ag doped Sn3O4 nanostructure and immobilized on hyper branched polypyrrole for visible light sensitized photocatalytic, antibacterial agent and microbial detection process. J. Photochem. Photobiol. B 228, 112393 (2022)

    Article  CAS  Google Scholar 

  15. T.L.R. Hewer, B.C. Machado, R.S. Freire, R. Guardani, Ag3PO4 sunlight-induced photocatalyst for degradation of phenol. RSC Adv. 4, 34674–34680 (2014)

    Article  CAS  Google Scholar 

  16. J. Yu, J. Zhang, S. Liu, Ion-exchange synthesis and enhanced visible-light photo activity of CuS/ZnS nanocomposite hollow spheres. J. Phys. Chem. C 114, 13642–13649 (2010)

    Article  CAS  Google Scholar 

  17. X.H. Guan, P. Qu, X. Guan, G.S. Wang, Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties. RSC Adv. 4, 15579–15585 (2014)

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Tian, H. Li, L. Wang, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Biomolecule assisted, environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance. Langmuir 28, 12893–12900 (2012)

    Article  CAS  Google Scholar 

  19. J. Kundu, D. Pradhan, Controlled synthesis and catalytic activity of copper sulphide nanostructured assemblies with different morphologies. ACS Appl. Mater. Interfaces 6, 1823–1834 (2014)

    Article  CAS  Google Scholar 

  20. . Basu, A. K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi, Govind, T. Pal, Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting, Environ. Sci. Technol. 44, 6313–6318 (2010)

  21. G. Nie, Z. Li, X. Lu, J. Lei, C. Zhang, C. Wang, Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Appl. Surf. Sci. 284, 595–600 (2013)

    Article  CAS  Google Scholar 

  22. Y. Wang, L. Zhang, H. Jiu, N. Lia, Y. Sun, Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities. J. Power Sources 269, 550–555 (2014)

    Google Scholar 

  23. Q.W. Shu, J. Lan, M.X. Gao, J. Wang, C.Z. Huang, Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm 17, 1374–1380 (2015)

    Article  CAS  Google Scholar 

  24. X. Meng, G. Tian, Y. Chen, R. Zhai, J. Zhou, Y. Shi, X. Cao, W. Zhou, H. Fu, Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. CrystEngComm 15, 5144–5149 (2013)

    Article  CAS  Google Scholar 

  25. W.X. Ye, Q.X. Zhu, W.Q. Xiong, J. Lei, X.H. Liao, Microwave hydrothermal synthesis of W doped CuS nanoparticle. Adv. Mater. Res. 906, 196–199 (2014)

    Article  Google Scholar 

  26. Z.-H. Wang, D.-Y. Geng, Y.-J. Zhang, Z.-D. Zhang, CuS: Ni flowerlike morphologies synthesized by the solvothermal route. Mater. Chem. Phys. 122, 241–245 (2010)

    Article  CAS  Google Scholar 

  27. N. Sreelekha, K. Subramanyam, D.A. Reddy, G. Murali, S. Ramu, K.R. Varma, R.P. Vijayalakshmi, Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Appl. Surf. Sci. 378, 330–340 (2016)

    Article  CAS  Google Scholar 

  28. N. Kandasamy, S. Saravanan, Synthesis and optical properties of Vanadium doped Covellite nanostructure by wet chemical method, in, IEEE, pp. 52–54.

  29. D.K. Patel, A. Kamyshny, A. Ariando, H. Zhen, S. Magdassi, Fabrication of transparent conducting films composed of In3+doped CuS and their application in flexible electroluminescent devices. J. Mater. Chem. C 3, 8700–8705 (2015)

    Article  CAS  Google Scholar 

  30. Y. Han, Y. Wang, W. Gao, Y. Wang, L. Jiao, H. Yuan, S. Liu, Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries. Powder Technol. 212, 64–68 (2011)

    Article  CAS  Google Scholar 

  31. J. Guan, J. Peng, X. Jin, Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal. Methods 7, 5454–5461 (2015)

    Article  CAS  Google Scholar 

  32. H. Ji, J. Cao, J. Feng, X. Chang, X. Ma, J. Liu, M. Zheng, Fabrication of CuS nanocrystals with various morphologies in the presence of a nonionic surfactant. Mater. Lett. 59, 3169–3172 (2005)

    Article  CAS  Google Scholar 

  33. W. Du, X. Qian, X. Ma, Q. Gong, H. Cao, J. Yin, Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nano platelets. Chemistry 13, 3241–3247 (2007)

    Article  CAS  Google Scholar 

  34. K.-J. Huang, J.-Z. Zhang, Y. Fan, One-step solvothermal synthesis of different morphologies CuS nano sheets compared as supercapacitor electrode materials. J. Alloys Compd. 625, 158–163 (2015)

    Article  CAS  Google Scholar 

  35. M.T.S. Nair, L. Guerrero, P.K. Nair, Conversion of chemically deposited CuS thin films to and by annealing. Semicond. Sci. Technol. 13(10), 1164 (1998)

    Article  CAS  Google Scholar 

  36. S.H. Chaki, M.P. Deshpande, J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550, 291–297 (2014)

    Article  CAS  Google Scholar 

  37. A. Bollero, S. Fernández, K.Z. Rozman, Z. Samardzija, M. Grossberg, Preparation and quality assessment of CuS thin films encapsulated in glass. Thin Solid Films 520(12), 4184–4189 (2012)

    Article  CAS  Google Scholar 

  38. C. Naşcu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films. Mater. Lett. 32(2–3), 73–77 (1997)

    Article  Google Scholar 

  39. M. Kemmler, M. Lazell, P. O’brie, net al., The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors. J. Mater. Sci.: Mater. Electron. 13(9), 531–535 (2002)

    CAS  Google Scholar 

  40. Y. Chen, C. Davoisne, J.M. Tarascon, C. Guéry, Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries. J. Mater. Chem. 22(12), 5295–5299 (2012)

    Article  CAS  Google Scholar 

  41. M. Gossla, H. Metzner, H.E. Mahnke, CuInS2 thin-films from co-evaporated precursors. Thin Solid Films 387(1–2), 77–79 (2001)

    Article  CAS  Google Scholar 

  42. H.M. Pathan, J.D. Desai, C.D. Lokhande, Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci. 202(1–2), 47–56 (2002)

    Article  CAS  Google Scholar 

  43. M. Patil, D. Sharma, A. Dive, S. Mahajan, R. Sharma, Study of various synthesis techniques of nanomaterials. In AIP Conference Proceedings (Vol. 1953, No. 1, p. 030238). AIP Publishing LLC (2018).

  44. M. Patil, D. Sharma, A. Dive, S. Mahajan, R. Sharma, Synthesis and characterization of Cu2S thin film deposited by chemical bath deposition method. Proc. Manuf. 20, 505–508 (2018)

    Google Scholar 

  45. R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65(1), 1–31 (2000)

    Article  CAS  Google Scholar 

  46. Y. Li, Hu. Jiwen, G. Liu, G. Zhang, H. Zou, J. Shi, Amylosedirected synthesis of CuS composite nanowires and microspheres. Carbohydr. Polym. 92, 555–563 (2013)

    Article  CAS  Google Scholar 

  47. K.T. Al-Rasoul, N.K. Abbas, Z.J. Shanan, Structural and optical characterization of Cu and Ni doped ZnS nanoparticles. Int. J. Electro Chem. Sci 8(4), 5594–5604 (2013)

    CAS  Google Scholar 

  48. S.T. Bindu, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys 8, 123–134 (2014)

    Article  Google Scholar 

  49. K.V. Peruman, M. Mahendran, S. Seenithurai, R. Chokkalingam, R.K. Singh, V. Chandrasekaran, Internal stress dependent structural transition in ferromagnetic Ni–Mn–Ga nanoparticles prepared by ball milling. J. Phys. Chem. Solids 71, 1540–1544 (2010)

    Article  Google Scholar 

  50. C. Simonescu, V. Teodorescu, O. Carp, L. Patron, C. Capatina, Thermal behaviour of CuS (covellite) obtained from copper–thiosulfate system. J. Therm. Anal. Calorim. 88(1), 71–76 (2007)

    Article  CAS  Google Scholar 

  51. Y. Huang, H. Xiao, S. Chen, C. Wang, Preparation and characterization of CuS hollow spheres. Ceram. Int. 35(2), 905–907 (2009)

    Article  CAS  Google Scholar 

  52. J. Zou, J. Zhang, B. Zhang, P. Zhao, X. Xu, J. Chen, K. Huang, Synthesis and characterization of copper sulfide nano crystal with three-dimensional flower-shape. J. Mater. Sci. 42(22), 9181–9186 (2007)

    Article  CAS  Google Scholar 

  53. G.D. Smith, R.J. Clark, The role of H2S in pigment blackening. J. Cult. Herit. 3(2), 101–105 (2002)

    Article  Google Scholar 

  54. T.P. Mernagh, A.G. Trudu, A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol. 103(1–4), 113–127 (1993)

    Article  CAS  Google Scholar 

  55. N.A. Yeryukov, A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, L.D. Pokrovsky, A.K. Gutakovskii, S.A. Batsanov, E.E. Rodyakina, A.V. Latyshev, D.R.T. Zahn, Synthesis and characterization of CuxS (x = 1–2) nanocrystals formed by the Langmuir-Blodgett technique. J. Phys. Chem. C 118, 23409–23414 (2014)

    Article  CAS  Google Scholar 

  56. M. Ishii, K. Shibata, H. Nozaki, Anion distributions and phase transitions in CuS1-xSex (x=0-1) studied by Raman spectroscopy. Solid State Chem. 105, 504–511 (1993)

    Article  CAS  Google Scholar 

  57. S. Maensiri, C.P. Laokul, V. Promarak, Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and polyvinyl pyrrolidone. J. Cryst. Growth. 289, 102–106 (2006)

    Article  CAS  Google Scholar 

  58. G.L. Kabongo et al., Micro structural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. J. Alloys Compds. 591, 156–163 (2014)

    Article  CAS  Google Scholar 

  59. F. Zhang, S.S. Wong, Controlled synthesis of semiconducting metal sulfide nanowires. Chem. Mater. 21(19), 4541–4554 (2009)

    Article  CAS  Google Scholar 

  60. Y. Du, Z. Yin, J. Zhu, X. Huang, X.J. Wu, Z. Zeng, H. Zhang, A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3(1), 1–7 (2012)

    Article  Google Scholar 

  61. M.T.S. Nair, C. Lopez-Mata, O. Gomez Daza, P.K. Nair, Copper tin sulfide semiconductor thin films produced by heating SnS–CuS layers deposited from chemical bath. Semicond. Sci. Technol. 18(8), 755 (2003)

    Article  CAS  Google Scholar 

  62. N. Mukherjee, A. Sinha, G.G. Khan, D. Chandra, A. Bhaumik, A. Mondal, A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique. Mater. Res. Bull. 46(1), 6–11 (2011)

    Article  CAS  Google Scholar 

  63. C.X. Xu, G.P. Zhu, X. Li et al., Growth and spectral analysis of ZnO nanotubes. J. Appl. Phys. 103, 094303 (2008)

    Article  Google Scholar 

  64. V.V. Kutwade, K.P. Gattu, M.E. Sonawane, F. Khan, D.A. Tonpe, M. Balal, R. Sharma, Growth and exploration of visible-light-driven enhanced photocatalytic activity of Cu1–XCrxS/CdS heterojunction thin film for active dye degradation. Appl. Phys. A 128(7), 1–14 (2022)

    Article  Google Scholar 

  65. A. Ghosh, A. Mondal, A simple electrochemical route to deposit Cu7S4 thin films and their photocatalytic properties. Appl. Surf. Sci. 328, 63–70 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KV [First author], BJ [corresponding author and research supervisor], MJ and KV [contributing in characterization and manuscript preparation].

Corresponding author

Correspondence to B. Jayasutha.

Ethics declarations

Conflict of interest

All the authors do not have any potential conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinotha, K., Jayasutha, B., Abel, M.J. et al. In3+-doped CuS thin films: physicochemical characteristics and photocatalytic property. J Mater Sci: Mater Electron 33, 22862–22882 (2022). https://doi.org/10.1007/s10854-022-09056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09056-1

Navigation