Skip to main content
Log in

Impact of yttrium on structural, optical and electrical behavior of CuO thin film prepared by JN spray pyrolysis technique for diode application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The thin films of CuO with yttrium as a dopant at 1, 3, and 5wt% are prepared using a simple and economic JNS spray pyrolysis technique at the optimized substrate temperature of 600 °C. The impact of yttrium doping on the structural, optical, and electrical properties of CuO thin films has been investigated. The structural properties of synthesized films are analyzed using X-ray diffraction (XRD) studies, which confirmed that all the films are polycrystalline with a monoclinic structure. Scanning electron microscopy was analyzed to study the changes that occurred in the morphology of the sample with the concentration of yttrium doped. The optical characteristics of the films are investigated using a UV–Vis absorption spectrophotometer. Y3+ ion causes the fall of absorption in the visible region. The optical bandgap of the pure and yttrium-doped CuO thin films are calculated from the Tauc’s plot of their absorption spectrum. The higher the concentration of the yttrium, larger the bandgap value indeed. The variation in the electrical behavior of the prepared films with the yttrium concentration has been investigated using a Keithley electrometer two-probe setup. The average conductivity of the films increases as the yttrium content increases. The p-YCuO/n-si diodes with 1%, 3%, and 5% yttrium doped on CuO are fabricated and their ideality factors (n) and potential barrier values (Φ) are calculated using the JV method. The presence of Y3+ ions makes the rectification behavior of the diodes better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or generated during the current study are available from the corresponding author on reasonable request.

References

  1. S. Raheleh, H. Abbas, O. Amiri, M. Salavati-niasari, Synthesis, characterization and application of Co / Co 3 O 4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  2. S. Raheleh, Y. Davood, G. Masoud, Photo-degradation of organic dyes : simple chemical synthesis of Ni ( OH ) 2 nanoparticles, Ni / Ni ( OH ) 2 and Ni / NiO magnetic nanocomposites. J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3882-6

    Article  Google Scholar 

  3. https://www.sciencedirect.com/science/article/abs/pii/S0360319922008126#!, “Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities,” 47(31), 14319–14330, Apr. 2022.

  4. S. Raheleh, M. Masjedi-arani, ScienceDirect Hydrothermal synthesis of DyMn 2 O 5 / Ba 3 Mn 2 O 8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  5. Y. Ohya, S. Ito, T. Ban, Y. Takahashi, Preparation of CuO thin films and their electrical conductivity. Key Eng. Mater. 182(181–182), 113–116 (2000). https://doi.org/10.4028/www.scientific.net/kem.181-182.113

    Article  Google Scholar 

  6. P. Cao, Y. Bai, Structural and optical properties of ZnCoO thin film prepared by electrodeposition. Adv. Mater. Res. 781–784, 323–326 (2013). https://doi.org/10.4028/www.scientific.net/AMR.781-784.323

    Article  CAS  Google Scholar 

  7. “Spin Coated Multilayered Cupric Oxide Thin Films and their structural properties P. Samarasekara and N.G.K.V.M. Premasiri Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka,” (pp. 1–10)

  8. H. Qamar-Kane, A. Fall, L. Diop, New MX 2 oxalato polynuclear adducts (M = Cd, Hg, Zn; X = Cl, Br): synthesis and infrared study. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 12(4), 357–362 (2011)

    CAS  Google Scholar 

  9. A. Tombak, M. Benhaliliba, Y.S. Ocak, T. Kiliçoglu, The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results Phys. 5, 314–321 (2015). https://doi.org/10.1016/j.rinp.2015.11.001

    Article  Google Scholar 

  10. G. Palareti et al., Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 38(1), 42–49 (2016). https://doi.org/10.1111/ijlh.12426

    Article  CAS  Google Scholar 

  11. Q.J. Liu, N.C. Zhang, Y.Y. Sun, F.S. Liu, Z.T. Liu, Structural, mechanical, electronic, optical properties and effective masses of CuMO2 (M = Sc, Y, La) compounds: first-principles calculations. Solid State Sci. 31, 37–45 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.02.017

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, O. Amiri, M. Salavati-niasari, Control sonochemical parameter to prepare pure Zn 0 . 35 Fe 2 . 65 O 4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  Google Scholar 

  13. I. Atribak, A. Bueno-López, A. García-García, Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria-zirconia catalysts. J. Mol. Catal. A Chem. 300(1–2), 103–110 (2009). https://doi.org/10.1016/j.molcata.2008.10.043

    Article  CAS  Google Scholar 

  14. A. Tombak, S. Baturay, T. Kilicoglu, Y.S. Ocak, Optical, electrical, and morphological effects of yttrium doping of cadmium oxide thin films grown by ultrasonic spray pyrolysis. J. Electron. Mater. 46(4), 2090–2096 (2017). https://doi.org/10.1007/s11664-016-5134-9

    Article  CAS  Google Scholar 

  15. M. A. Kaiyum and N. Ahmed, “Yttrium Doped TiO2 Thin Film for Gas Sensing Application Prepared by Spin Coating Method,” 2020.

  16. S. Baig, A.D. Hendsbee, P. Kumar, S. Ahmed, Y. Li, Yttrium-doped CuSCN thin film transistor: synthesis and optoelectronic characterization study. J. Mater. Chem. C 7(46), 14543–14554 (2019). https://doi.org/10.1039/c9tc05371a

    Article  CAS  Google Scholar 

  17. N. Jhansi et al., Impact of substrate temperature on structural, electric and optical characteristics of CuO thin films grown by JNS pyrolysis technique. SILICON (2022). https://doi.org/10.1007/s12633-021-01578-3

    Article  Google Scholar 

  18. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol – gel. Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  Google Scholar 

  19. D. Dastan, S. Leila, P. Nandu, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4985-4

    Article  Google Scholar 

  20. X. Li, X. Lian, F. Liu, Rear-end road crash characteristics analysis based on chinese in-depth crash study data. CICTP 2016 - Green Multimodal Transp. Logist. - Proc. 16th COTA Int. Conf. Transp. Prof. (2016). https://doi.org/10.1061/9780784479896.140

    Article  Google Scholar 

  21. A.J. Kulandaisamy, V. Elavalagan, P. Shankar, G.K. Mani, K.J. Babu, J.B.B. Rayappan, Nanostructured cerium-doped ZnO thin film – A breath sensor. Ceram. Int. 42(16), 18289–18295 (2016). https://doi.org/10.1016/j.ceramint.2016.08.156

    Article  CAS  Google Scholar 

  22. K. Sakai et al., Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films grown by a reactive plasma deposition by means of piezoelectric photothermal spectroscopy. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2173040

    Article  Google Scholar 

  23. Y. Ma, J. Zhang, B. Tian, F. Chen, L. Wang, Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J. Hazard. Mater. 182(1–3), 386–393 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.045

    Article  CAS  Google Scholar 

  24. S. Raheleh, Y. Mojgan, G. Omid, Z. Marzhoseyni, P.M.M. Hajizadeh-, scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.17696

    Article  Google Scholar 

  25. D. Dastan, N.B. Chaure, Influence of surfactants on TiO 2 nanoparticles grown by sol-gel technique. Int. J. Mater. Mech Manuf. 2(1), 21–24 (2014). https://doi.org/10.7763/IJMMM.2014.V2.91

    Article  CAS  Google Scholar 

  26. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Matter Nano Phys. 2(2), 109–114 (2015). https://doi.org/10.26713/jamcnp.v2i2.331

    Article  Google Scholar 

  27. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46(23), 15578–15581 (1992). https://doi.org/10.1103/PhysRevB.46.15578

    Article  CAS  Google Scholar 

  28. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, H. Garmestani, Conductivity and mixed conductivity of a novel dense diffusion barrier and the sensing properties of limiting current oxygen sensors. Dalton Trans. (2020). https://doi.org/10.1039/D0DT00496K

    Article  Google Scholar 

  29. K. Shan, Z. Yi, X. Yin, D. Dastan, H. Garmestani, “Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for a limiting current oxygen sensor. Dalton Trans. (2020). https://doi.org/10.1039/d0dt01159b

    Article  Google Scholar 

  30. A.S. Baig, P. Kumar, J. Ngai, Y. Li, S. Ahmed, “Yttrium doped copper (II) oxide hole transport material as efficient thin film transistor. ChemPhysChem (2020). https://doi.org/10.1002/cphc.202000005

    Article  Google Scholar 

  31. M. Balaji, J. Chandrasekaran, M. Raja, Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P-N junction diode application. Mater. Sci. Semicond. Process 43, 104–113 (2016). https://doi.org/10.1016/j.mssp.2015.12.009

    Article  CAS  Google Scholar 

  32. K. Shan, Z. Yi, X. Yin, D. Dastan, F. Altaf, Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surfaces Interfaces 21, 100762 (2020). https://doi.org/10.1016/j.surfin.2020.100762

    Article  CAS  Google Scholar 

  33. D. Dastan, S.W. Gosavi, N.B. Chaure, “Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. (2015). https://doi.org/10.1002/masy.201400042

    Article  Google Scholar 

  34. M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, Structural, optical and electrical properties of Ru doped MoO3 thin films and its P-N diode application by JNS pyrolysis technique. J. Mater. Sci. Mater. Electron. 27(11), 11646–11658 (2016). https://doi.org/10.1007/s10854-016-5300-0

    Article  CAS  Google Scholar 

  35. K. Shanmugasundaram, P. Thirunavukkarasu, M. Balaji, Effect of Sn doping on the structural, optical, electrical properties and Diode characteristics of WO3 thin films deposited by jet nebulizer spray technique. Mater. Today Proc. 18, 1648–1657 (2019). https://doi.org/10.1016/j.matpr.2019.05.261

    Article  CAS  Google Scholar 

  36. M. Balaji, J. Chandrasekaran, M. Raja, Characterization of WMoO3 thin films and its n-WMoO3/p-Si junction diodes via JNS pyrolysis technique. Zeitschrift fur Phys. Chemie 231(5), 1017–1037 (2017). https://doi.org/10.1515/zpch-2016-0861

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grands or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NJ, DB, RR, and RJ. The first draft of the manuscript was written by NJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Balasubramanian.

Ethics declarations

Competing interest

The authors have no relevant financial or non financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhansi, N., Balasubramanian, D., Raman, R. et al. Impact of yttrium on structural, optical and electrical behavior of CuO thin film prepared by JN spray pyrolysis technique for diode application. J Mater Sci: Mater Electron 33, 22785–22797 (2022). https://doi.org/10.1007/s10854-022-09046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09046-3

Navigation