Skip to main content
Log in

Fabrication of Bi-component Co–Cr doped M-type Sr-hexagonal ferrites: their structural, hysteresis, and susceptibility performance metrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Co2+–Cr3+ ions substituted M-type hexagonal ferrites with composition Sr \((CoCr)_{x} Fe_{{\left( {12 - 2x} \right)}} O_{19}\) (\(0.0 \le x \le 1.0\)) were prepared using the sol–gel auto combustion method. Prepared samples were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM). XRD affirms the establishment of a magnetoplumbite structure without the formation of a secondary phase. The crystallite size varies from 35.76 to 39.74 nm and FTIR analysis indicates the formation of SrM hexaferrite due to the presence of two prominent peaks in the range of 400–600 cm−1. SEM micrographs exhibit the platelet-like structure. VSM analysis shows that coercivity and retentivity decrease non-linearly in substituted samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A.D. Deshpande, K.G. Rewatkar, V.M. Nanoti, Mater. Today Proc. (2017). https://doi.org/10.1016/j.matpr.2017.09.147

    Article  Google Scholar 

  2. H. Bayrakdar, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.055

    Article  Google Scholar 

  3. S.S.S. Afghahi, M. Jafarian, Y. Atassi, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2016.01.020

    Article  Google Scholar 

  4. A. Sharbati, J. Mola Verdi Khani, G.R. Amiri, Solid State Commun. (2012). https://doi.org/10.1016/j.ssc.2011.11.009

    Article  Google Scholar 

  5. G. Feng, W. Zhou, Y. Li, Y. Qing, S. Duan, H. Jia, F. Luo, D. Zhu, Z. Huang, Y. Zhou, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.140

    Article  Google Scholar 

  6. B. Zong, X. Niu, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03089-0

    Article  Google Scholar 

  7. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimo, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.02.078

    Article  Google Scholar 

  8. S.M. Patange, S.E. Shirsath, G.S. Jangam, K.S. Lohar, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3559266

    Article  Google Scholar 

  9. C. Singh, S. Bindra Narang, I.S. Hudiara, K.C. James Raju, K. Sudheendran, J. Ceram. Process. Res. 11, 692–697 (2010)

    Google Scholar 

  10. Y. Feng, S. Li, Y. Zheng, Z. Yi, Y. He, Y. Xu, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.12.432

    Article  Google Scholar 

  11. R.B. Jotania, R.B. Khomane, C.C. Chauhan, S.K. Menon, B.D. Kulkarni, J. Magn. Magn. Mater. (2008). https://doi.org/10.1016/j.jmmm.2007.10.032

    Article  Google Scholar 

  12. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, J. Saudi Chem. Soc. (2017). https://doi.org/10.1016/j.jscs.2015.12.006

    Article  Google Scholar 

  13. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. (2002). https://doi.org/10.1016/S0304-8853(02)00106

    Article  Google Scholar 

  14. Q. Chang, H. Liang, B. Shi, H. Wu, iScience (2022). https://doi.org/10.1016/j.isci.2022.103925

    Article  Google Scholar 

  15. N. Tran, Y.J. Choi, T.L. Phan, D.S. Yang, B.W. Lee, Curr. Appl. Phys. (2019). https://doi.org/10.1016/j.cap.2019.08.023

    Article  Google Scholar 

  16. G. Feng, W. Zhou, Y. Li, Y. Qing, F. Luo, D. Zhu, Y. Zhou, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-019-02567-4

    Article  Google Scholar 

  17. S.C. Bhandari, D. Guragain, J. Mohapatra, S. Yoon, J.P. Liu, S.R. Mishra, J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-021-05882-2

    Article  Google Scholar 

  18. T.L. Phan, N. Tran, H.H. Nguyen, D.S. Yang, N.T. Dang, B.W. Lee, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152528

    Article  Google Scholar 

  19. C. Liu, X. Kan, S. Feng, J. Hu, W. Wang, K. Mehmood, U. Rehman, M. Shezad, Eng. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.08.245

    Article  Google Scholar 

  20. L. Wang, L. He, J. Li, Y. Yu, H. Li, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04739-z

    Article  Google Scholar 

  21. V.C. Chavan, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.S. More, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2015.09.002

    Article  Google Scholar 

  22. T. Tchouank, T. Carol, J. Sharma, J. Mohammed, S. Kumar, A.K. Srivastava, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4990307

    Article  Google Scholar 

  23. M. Augustin, T. Balu, Int. J. Nanosci. (2017). https://doi.org/10.1142/S0219581X16500356

    Article  Google Scholar 

  24. S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Mater. Res. Bull. (2015). https://doi.org/10.1016/j.materresbull.2014.11.043

    Article  Google Scholar 

  25. J. Mohammed, H.Y. Hafeez, T. Tekou, C.T. Chifu, E. Ndikilar, J. Sharma, P.K. Maji, S.K. Godara, A.K. Srivastava, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab063b

    Article  Google Scholar 

  26. H. Mahajan, S.K. Godara, A.K. Srivastava, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  Google Scholar 

  27. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  Google Scholar 

  28. S.V. Bhandare, R. Kumar, A.V. Anupama, M. Mishra, R. Vijaya Kumar, V.M. Jali, B. Sahoo, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123081

    Article  Google Scholar 

  29. H. Kaur, A. Marwaha, S.B. Narang, R. Jotania, S.R. Mishra, Y. Bai, K.C. James Raju, D. Singh, M. Ghimire, P. Dhruv, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9638-3

    Article  Google Scholar 

  30. M.J. Iqbal, S. Farooq, Mater. Chem. Phys. (2009). https://doi.org/10.1016/j.matchemphys.2009.07.056

    Article  Google Scholar 

  31. T.T. Carol, T.J. Mohammed, B.H. Bhat, S. Mishra, S.K. Godara, A.K. Srivastava, Phys. Matter. B Condens. (2019). https://doi.org/10.1016/j.physb.2019.411681

    Article  Google Scholar 

  32. S.K. Chawla, S.S. Meena, P. Kaur, R.K. Mudsainiyan, S.M. Yusuf, J. Magn. Magn. Mater. (2015). https://doi.org/10.1016/j.jmmm.2014.10.168

    Article  Google Scholar 

  33. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Phys. A Mater. Sci. Process Appl. (2015). https://doi.org/10.1007/s00339-015-9134-z

    Article  Google Scholar 

  34. G.A. Ashraf, L. Zhang, W. Abbas, G. Murtaza, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.07.096

    Article  Google Scholar 

  35. T.M. Meaz, C.B. Koch, Hyperfine Interact. (2005). https://doi.org/10.1007/s10751-006-9308-3

    Article  Google Scholar 

  36. S.W. Lee, J. Drwiega, D. Mazyck, C.Y. Wu, W.M. Sigmund, Mater. Chem. Phys. (2006). https://doi.org/10.1016/j.matchemphys.2005.07.039

    Article  Google Scholar 

  37. J. Xu, H. Zou, H. Li, G. Li, S. Gan, G. Hong, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.10.079

    Article  Google Scholar 

  38. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4759436

    Article  Google Scholar 

  39. R.C. Alange, P.P. Khirade, S.D. Birajdar, K.M. Jadhav, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5537-7

    Article  Google Scholar 

  40. H.S. Mund, B.L. Ahuja, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2016.09.027

    Article  Google Scholar 

  41. M.V. Rane, D. Bahadur, A.K. Nigam, C.M. Srivastava, J. Magn. Magn. Mater. (1999). https://doi.org/10.1016/S0304-8853(98)00533-2

    Article  Google Scholar 

  42. Z. Slmsa, S. Lego, R. Gerber, E. Pollert, J. Magn. Magn. Mater. (1995). https://doi.org/10.1016/0304-8853(94)01393-4

    Article  Google Scholar 

  43. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusufb, J. Magn. Magn. Mater. (2014). https://doi.org/10.1016/j.jmmm.2013.09.007

    Article  Google Scholar 

  44. R. Grössinger, J. Magn. Magn. Mater. (1982). https://doi.org/10.1016/0304-8853(82)90037-3

    Article  Google Scholar 

  45. T. Ben Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.071

    Article  Google Scholar 

  46. A. Ghasemi, A. Morisako, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2007.02.10

    Article  Google Scholar 

  47. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Mater. Lett. (2009). https://doi.org/10.1016/j.matlet.2009.06.002

    Article  Google Scholar 

  48. A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.08.188

    Article  Google Scholar 

  49. E. Roohani, H. Arabi, R. Sarhaddi, A. Shabani, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-017-4351-7

    Article  Google Scholar 

  50. S. Jauhar, J. Singh, K. Chandra, S. Bansal, S. Singhal, Powder Technol. (2011). https://doi.org/10.1016/j.powtec.2011.05.014

    Article  Google Scholar 

  51. T.T. Carol Trudel, J. Mohammed, H.Y. Hafeez, B.H. Bhat, S.K. Godara, A.K. Srivastava, Phys. Status Solidi Appl. Mater. Sci. (2019). https://doi.org/10.1002/pssa.201800928

    Article  Google Scholar 

  52. R. Shams Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  Google Scholar 

  53. J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S. Bindra Narang, R. Jotania, S.R. Mishra, R. Joshi, P. Dhruv, M. Ghimire, S.E. Shirsath, S.S. Meena, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.237

    Article  Google Scholar 

  54. V. Dixit, D. Thapa, B. Lamichhane, C.N. Nandadasa, Y.K. Hong, S.G. Kim, J. Appl. Phys. (2019). https://doi.org/10.1063/1.5084762

    Article  Google Scholar 

  55. S. Asiri, S. Güner, A.D. Korkmaz, Md. Amir, K.M. Batoo, M.A. Almessiere, H. Gungunes, H. Sözeri, A. Baykal, J. Magn. Magn. Mater (2018). https://doi.org/10.1016/j.jmmm.2017.11.100

    Article  Google Scholar 

  56. A. Awadallah, S.H. Mahmood, Y. Maswadeh, I. Bsoul, A. Aloqaily, IOP Conf. Ser. Mater .Sci. Eng. (2015). https://doi.org/10.1088/1757-899X/92/1/012006

    Article  Google Scholar 

  57. V. Pop, E. Dorolti, C. Vaju, E. Gautron, O. Isnard, J.M. LE Breton, I. Chicinas, Rom. Rep. Phys. 55, 127–136 (2010)

    CAS  Google Scholar 

  58. W. Zhang, A. Sun, X. Zhao, N. Suo, L. Yu, Z. Zuo, J. Sol-Gel Sci. Technol. (2019). https://doi.org/10.1007/s10971-019-04941-4

    Article  Google Scholar 

  59. J.N. Dahal, D. Neupane, T.P. Poudel, AIP Adv. (2019). https://doi.org/10.1063/1.5096530

    Article  Google Scholar 

  60. I. Panneer Muthuselvam, R.N. Bhowmik, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2009.10.057

    Article  Google Scholar 

  61. D.N. Dipesh, L. Wang, H. Adhikari, J. Alam, S.R. Mishra, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.07.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MT: Investigation, Synthesis, Formal analysis, Writing—original draft, Data analysis and Curation, Software. CS: Conceptualization, Investigation, Methodology, Data analysis and Curation, Writing—review and editing. AKS: Synthesis and Investigation. SKG: XRD measurements, Optimization of materials for synthesis. BAW: VSM Measurements.

Corresponding authors

Correspondence to Charanjeet Singh or A. K. Srivastava.

Ethics declarations

Conflict of interest

All authors declare that there is no competing interest.

Research involving human participants and/or animals

All authors declare that there is no Research involving Human Participants and/or Animals.

Informed consent

All authors declare that all mentioned consent have been given.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Singh, C., Godara, S.K. et al. Fabrication of Bi-component Co–Cr doped M-type Sr-hexagonal ferrites: their structural, hysteresis, and susceptibility performance metrics. J Mater Sci: Mater Electron 33, 22421–22434 (2022). https://doi.org/10.1007/s10854-022-09019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09019-6

Navigation