Skip to main content
Log in

Influence of Al–Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Substituted strontium hexaferrite ceramics SrCr x Al x Fe12−2x O19 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by sol–gel auto-combustion method. X-ray diffraction (XRD) study revealed the M-type hexagonal structure of the synthesized nanoferrites with some additional peaks of Fe2O3. The lattice constants (a and c), unit cell volume (V), X-ray density (ρ x ), bulk density (ρ m ), porosity (P) and average crystallite size (t) values changes when Al–Cr ions are co-substituted in SrFe12O19 lattice, resulting in the structural variation. The surface morphology of the grains was examined by scanning electron microscopy (FESEM). Fourier transform infrared spectroscopy (FTIR) confirmed the formation of hexagonal ferrite structure. Ferromagnetic nature confirmed by recording M-H curves exhibited typical hysteresis loop at room temperature using pulse field hysteresis loop tracer technique. The large coercivity (H c ) values indicate the nanocrystalline nature of the present samples. The coercivity (H c ), saturation magnetization (M s ), remanence magnetization (M r ) and magneton number (n B ) decreases with increase in Al–Cr content x. The DC electrical resistivity studies of the prepared samples were carried out in the temperature range of 300–873 K using a standard two-probe technique. Curie temperature (Tc) i.e. ferrimagnetic to paramagnetic transition temperature for all samples was obtained from resistivity data. The Curie temperature decreases linearly as the concentration of Al–Cr content is increased. The activation energy below and above Tc was calculated. The dielectric parameters such as dielectric constant (ɛ′), dielectric loss (ɛ″) and loss tangent (tan δ) were measured in the frequency range 50 Hz–5 MHz at room temperature. All the dielectrical parameters show compositional as a function of frequency dependences. At lower frequencies, it is observed that the dielectric constant (ɛ′), dielectric loss (ɛ″) and loss tangent (tan δ) are high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Meshram, N.K. Agrawal, B. Sinha, P. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)

    Article  Google Scholar 

  2. P. Tenaud, A. Morel, F. Kools, J. Le Breton, L. Lechevallier, Recent improvement of hard ferrite permanent magnets based on La–Co substitution. J. Alloy. Compd. 370, 331–334 (2004)

    Article  Google Scholar 

  3. T. Nakamura, E. Hankui, Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite. J. Magn. Magn. Mater. 257, 158–164 (2003)

    Article  Google Scholar 

  4. O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media. Magn. IEEE Trans 18, 1122–1124 (1982)

    Article  Google Scholar 

  5. S. Ram, D. Bahadur, D. Chakravorty, Crystallisation of W-type hexagonal ferrites in an oxide glass with As2O3 as nucleation catalyst. J. Magn. Magn. Mater. 67, 378–386 (1987)

    Article  Google Scholar 

  6. J. Uher, W.J. Hoefer, Tunable microwave and millimeter-wave band-pass filters. Microw. Theory Tech. IEEE Trans. 39, 643–653 (1991)

    Article  Google Scholar 

  7. R. Tiwary, S. Narayan, O. Pandey, Preparation of strontium hexaferrite magnets from celestite and blue dust by mechanochemical route. J. Min. Metall.Sect. B. 44, 91–100 (2008)

    Article  Google Scholar 

  8. T.-S. Chin, Permanent magnet films for applications in microelectromechanical systems. J. Magn. Magn. Mater. 209, 75–79 (2000)

    Article  Google Scholar 

  9. M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)

    Article  Google Scholar 

  10. M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)

    Article  Google Scholar 

  11. M. Hessien, M. Rashad, K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320, 336–343 (2008)

    Article  Google Scholar 

  12. S. Hussain, A. Maqsood, Influence of sintering time on structural, magnetic and electrical properties of Si–Ca added Sr-hexa ferrites. J. Magn. Magn. Mater. 316, 73–80 (2007)

    Article  Google Scholar 

  13. F. Leccabue, R. Panizzieri, G. Salviati, G. Albanese, J.S. Llamazares, Magnetic and morphological study of BaZn2Fe16O27 hexagonal ferrite prepared by chemical coprecipitation method. J. Appl. Phys. 59, 2114–2118 (1986)

    Article  Google Scholar 

  14. E. Kiani, A.S. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method. J. Mater. Sci.: Mater. Electron. 24, 2485–2492 (2013)

    Google Scholar 

  15. R. Pullar, A. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol–gel precursor, without formation of the α-BaFe 2 O 4 intermediate phase. Mater. Lett. 57, 537–542 (2002)

    Article  Google Scholar 

  16. H.-I. Hsiang, R.-Q. Yao, Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)

    Article  Google Scholar 

  17. A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe 12 O 19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)

    Article  Google Scholar 

  18. P. Xu, X. Han, M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111, 5866–5870 (2007)

    Article  Google Scholar 

  19. Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)

    Article  Google Scholar 

  20. L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    Article  Google Scholar 

  21. Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe 9.6 Co 0.8 Ti 0.8 M 0.8 O 19 particles. Mater. Chem. Phys. 64, 256–259 (2000)

    Article  Google Scholar 

  22. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 294, 281–286 (2005)

    Article  Google Scholar 

  23. P. Röschmann, M. Lemke, W. Tolksdorf, F. Welz, Anisotropy fields and FMR linewidth in single-crystal Al, Ga and Sc substituted hexagonal ferrites with M structure. Mater. Res Bull. 19, 385–392 (1984)

    Article  Google Scholar 

  24. Z. Wang, Z. Zhou, W. Zhang, H. Qian, M. Jin, Preparation and magnetic properties of Nd3+ , Al3+ , Ca2+ substituted M-type strontium hexaferrites. J. Supercond. Novel Magn. 26, 3501–3506 (2013)

    Article  Google Scholar 

  25. A. Sharbati, J.M.V. Khani, Effect of Ho3+ substitution on magnetic and microwave absorption properties of Sr (ZnZr) 0.5 Fe12O19 hexagonal ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 3629–3633 (2013)

    Google Scholar 

  26. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Magnetic properties of Ni–Co doped barium strontium hexaferrite. J. Mater. Sci.: Mater. Electron. 23, 1575–1579 (2012)

    Google Scholar 

  27. G. Albanese, M. Carbucicchio, A. Deriu, Temperature dependence of the sublattice magnetizations in Al-and Ga-substituted M-type hexagonal ferrites. Phys. Status Solidi (a) 23, 351–358 (1974)

    Article  Google Scholar 

  28. A. Kamzin, L. Ol’khovik, Surface magnetism of Al-substituted Sr-M-type hexagonal ferrites. Phys. Solid State 41, 1658–1664 (1999)

    Article  Google Scholar 

  29. S. Ounnunkad, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process. J. Magn. Magn. Mater. 301, 292–300 (2006)

    Article  Google Scholar 

  30. M.N. Ashiq, M. Javed, I. Iqbal, H. Gul, Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323, 259–263 (2011)

    Article  Google Scholar 

  31. R. Alange, P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)

    Article  Google Scholar 

  32. X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, M. Font-Altaba, Crystal structure of strontium hexaferrite SrFe12O19. J. Solid State Chem. 72, 218–224 (1988)

    Article  Google Scholar 

  33. A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21, 1951–1955 (2001)

    Article  Google Scholar 

  34. L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik A Hadrons Nuclei 5, 17–26 (1921)

    Google Scholar 

  35. C. Fang, F. Kools, R. Metselaar, R. De Groot, Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations. J. Phys.: Condens. Matter 15, 6229 (2003)

    Google Scholar 

  36. V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys B 406, 789–793 (2011)

    Article  Google Scholar 

  37. F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525–531 (2012)

    Article  Google Scholar 

  38. A. Thakur, R. Singh, P. Barman, Synthesis and characterizations of Nd 3+ doped SrFe 12 O 19 nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013)

    Article  Google Scholar 

  39. A. Das, A. Roychowdhury, S. Pati, S. Bandyopadhyay, D. Das, Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol–gel route. Phys. Scr. 90, 025802 (2015)

    Article  Google Scholar 

  40. I. Auwal, H. Güngüneş, S. Güner, S.E. Shirsath, M. Sertkol, A. Baykal, Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe 12–3x O 19 (0.0 ≤ x ≤ 0.33) hexaferrites. Mater. Res. Bull. 80, 263–272 (2016)

    Article  Google Scholar 

  41. R. Turton, The physics of solids (Oxford University Press, Oxford, 2000)

    Google Scholar 

  42. M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, M. Najam-ul-Haq, Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method. J. Magn. Magn. Mater. 332, 93–97 (2013)

    Article  Google Scholar 

  43. H. Luo, B. Rai, S. Mishra, V. Nguyen, J. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012)

    Article  Google Scholar 

  44. A.A. Nourbakhsh, M. Noorbakhsh, M. Nourbakhsh, M. Shaygan, K.J. Mackenzie, The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics. J. Mater. Sci.: Mater. Electron. 22, 1297–1302 (2011)

    Google Scholar 

  45. A.V. Raut, D. Kurmude, D. Shengule, K. Jadhav, Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater. Res. Bull. 63, 123–128 (2015)

    Article  Google Scholar 

  46. P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, electrical and dielectrical property investigations of Fe-doped BaZrO3 nanoceramics. J. Electron. Mater. 45, 3227–3235 (2016)

    Article  Google Scholar 

  47. P.P. Khirade, S.D. Birajdar, A. Raut, K.M. Jadhav, Effect of Fe–substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method, J. Electroceram. (2016). doi:10.1007/s10832-016-0044-z

  48. G. Sawatzky, J. Coey, A. Morrish, Mössbauer study of electron hopping in the octahedral sites of Fe3O4. J. Appl. Phys. 40, 1402–1403 (1969)

    Article  Google Scholar 

  49. M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe 12 O 19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)

    Article  Google Scholar 

  50. Z. Zi, Y. Sun, X. Zhu, C. Hao, X. Luo, Z. Yang, J. Dai, W. Song, Electrical transport and magnetic properties in La 0.7 Sr 0.3 MnO 3 and SrFe 12 O 19 composite system. J. Alloy. Compd. 477, 414–419 (2009)

    Article  Google Scholar 

  51. V. Vinayak, P.P. Khirade, S.D. Birajdar, R. Alange, K. Jadhav, Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+ -substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)

    Article  Google Scholar 

  52. M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D Appl. Phys. 34, 2935 (2001)

    Article  Google Scholar 

  53. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  54. B.H. Bhat, B. Want, Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5389-1

  55. A. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Structure and electrical properties of Co 0.5 Cd x Fe 2.5 − x O 4 ferrites. J. Alloy. Compd. 464, 361–369 (2008)

    Article  Google Scholar 

  56. M.J. Iqbal, S. Farooq, Extraordinary role of Ce–Ni elements on the electrical and magnetic properties of Sr–Ba M-type hexaferrites. Mater. Res. Bull. 44, 2050–2055 (2009)

    Article  Google Scholar 

  57. N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)

    Article  Google Scholar 

  58. S. Sanghi, A. Agarwal, N. Ahlawat, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112, 014110 (2012)

    Article  Google Scholar 

  59. I. Ali, M. Islam, M. Awan, M. Ahmad, Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104–2114 (2013)

    Article  Google Scholar 

  60. A. Shaikh, S. Bellad, B. Chougule, Temperature and frequency-dependent dielectric properties of Zn substituted Li–Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999)

    Article  Google Scholar 

  61. K. Praveena, M. Bououdina, M.P. Reddy, S. Srinath, R. Sandhya, S. Katlakunta, Structural, magnetic, and electrical properties of microwave-sintered Cr3+ -doped Sr hexaferrites. J. Electron. Mater. 44, 524–531 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very much thankful to Department of Physics, IIT Mumbai for providing X-ray diffraction (XRD), Shrikrushna College, Gunjoti (Osmanabad) for dielectrical measurement and North Maharashtra University, Jalgaon for scanning electron microscopy (SEM) characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alange, R.C., Khirade, P.P., Birajdar, S.D. et al. Influence of Al–Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto combustion method. J Mater Sci: Mater Electron 28, 407–417 (2017). https://doi.org/10.1007/s10854-016-5537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5537-7

Keywords

Navigation