Skip to main content
Log in

LiNbO3 thin films at different stirrer time: synthesis using chemical bath deposition (CBD) method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chemical bath deposition (CBD) technique is used to prepare lithium niobate (LN; LiNbO3) nanostructures. The deposition process was maintained over a quartz substrate at different chemical interaction times (3, 6, 9, 12 and 15 h) using the CBD method. The structural properties showed that sample stirring for 12 h resulted in the LN crystalline hexagonal peak at the (012) diffraction plane at 2θ = 23.75. Scanning electron microscopy showed that the samples became smoother, more homogeneous and showed a better distribution with increasing chemical interaction time. As the chemical interaction time increased, atomic force microscopy revealed a reduction in the grain size and an increase in the surface roughness. The Fourier transform infrared spectroscopy results confirmed the formation of the LN material and agreed with X-ray diffraction findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D. Janner, D. Tulli, M. Jofre, D. Yudistira, S. Balsamo, M. Belmonte, V. Pruneri, Domain inverted acousto- and electrooptic devices and their application to optical communication, sensing, laser sources, and quantum key distribution. IEEE J. Sel. Top. Quantum Electron. 19, 34006–34016 (2013)

    Article  CAS  Google Scholar 

  2. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Sol. Energy 120, 381–388 (2015)

    Article  CAS  Google Scholar 

  3. P. Kumar, S.M. Baru, S. Perero, R.M.L. Sai, I. Bhamik, S. Ganesamoorthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray direction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. J. Phys. 75, 1035–1040 (2010)

    CAS  Google Scholar 

  4. Z. Vakulov, E. Zamburg, D. Khakhulin, A. Geldash, D.A. Golosov, S.M. Zavadski, A.V. Miakonkikh et al., Oxygen pressure influence on properties of nanocrystalline LiNbO3 films grown by laser ablation. Nanomaterials 10, 1371 (2020)

    Article  CAS  Google Scholar 

  5. R. Barik, S.K. Satpathy, B. Behera, S.K. Biswal, R.K. Mohapatra, Synthesis and spectral characterizations of nano-sized lithium niobate (LiNbO3) ceramic. Micro Nanosyst. 12(2), 81–86 (2020)

    Article  CAS  Google Scholar 

  6. C.R. Cena, G.B. Torsoni, G.Q.D. Freitas, Synthesis of LiNbO3 thin films by using niobium oxalate. Matéria (Rio de Janeiro) 21, 623–631 (2016)

    Article  CAS  Google Scholar 

  7. B. Knabe, D. Schutze, T. Jungk, M. Svete, W. Assenmacher, W. Mader, K. Buse, Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method. Phys. Status Solidi (A) 208, 857–862 (2011)

    Article  CAS  Google Scholar 

  8. D. Tulli, Micro-nano structured electro-optic devices in LiNbO3 for communication and sensing. (2012).

  9. J. Zhang, X. Zhang, Biomolecular binding dynamics in sensors based on metallic photonic crystals. Opt. Commun. 320, 56–59 (2014)

    Article  CAS  Google Scholar 

  10. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F.I. Baida, M.-P. Bernal, 6-Micron interaction length ctro-optic modulation based on lithium niobate photonic crystal cavity. Opt. Express 20, 20884–20893 (2012)

    Article  CAS  Google Scholar 

  11. H. Chen, T. Lv, A. Zheng, Y. Han, Discrete diffraction based on electro-optic effect in periodically poled lithium niobate. Opt. Commun. 294, 202–207 (2013)

    Article  CAS  Google Scholar 

  12. P. Ganguly, Semi-analytical analysis of lithium niobate photonic wires. Opt. Commun. 285, 4347–4352 (2012)

    Article  CAS  Google Scholar 

  13. A.A. Mohamed, M.A. Metawe’e, A.N.Z. Rashed, A.I.M. Bendary, Ultra high speed semiconductor electrooptic modulator devices for gigahertz operation in optical communication systems. Int. J. Opt. Appl. 1, 1–7 (2011)

    Google Scholar 

  14. K.S. Kaur, A.Z. Subramanian, Y.J. Ying, D.P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C.L. Sones, S. Mailis, R.W. Eason, Waveguide mode filters fabricated using laserinduced forward transfer. Opt. Express 19, 9814–9819 (2011)

    Article  CAS  Google Scholar 

  15. S. Gong, Y.H. Song, T. Manzaneque, R. Lu, Y. Yang, A. Kourani, Lithium niobate MEMS devices and subsystems for radio frequency signal processing. In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) IEEE (2017), pp. 45–48.

  16. Y. Qi, Y. Li, Integrated lithium niobate photonics. Nanophotonics 9(6), 1287–1320 (2020)

    Article  CAS  Google Scholar 

  17. W. Branch et al., Investigation of a solid-state tuning behavior in lithium niobate. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 67(2), 365–373 (2020)

    Article  Google Scholar 

  18. J. Dai, R. Xu, Y.S. Lin, C.H. Chen, Tunable electromagnetic characteristics of suspended nanodisk metasurface. Optic Laser. Technol. 1, 128 (2020)

    Google Scholar 

  19. P.K. Anand Prem, A. Chakrapani, “A millimeter-wave generation scheme based on frequency octupling using LiNbO3 mach–zehnder modulator. Natl. Acad. Sci. Lett. 42, 5 (2019)

    Article  CAS  Google Scholar 

  20. B.S. Tang, C.X. Sun, Adjustment for mid-infrared narrow-band filtering characteristics in multilayer graphene nanofilms. Optics Precis. Eng. 27, 12 (2019)

    Google Scholar 

  21. P.J. Turner et al., 5 GHz band n79 wideband microacoustic filter using thin lithium niobate membrane. Electron. Lett. 55, 17 (2019)

    Article  Google Scholar 

  22. M. Bazzan, C. Sada, M. Bazzan, C. Sada, Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603–040611 (2015)

    Article  CAS  Google Scholar 

  23. I. Bolesta, M. Vakiv, V. Haiduchok, O. Kushnir, R. Gamernyk, Optical properties of LiNbO3-Ag nanocomposites. Int. Conf. Oxide Mater. Electron. Eng. 133(4), 860–863 (2018)

    CAS  Google Scholar 

  24. A.F. Makram, M.S. Alwazni, A.D. Yarub, E.T. Salim, H. Uda, C.C. Woei, Preparation of nanophotonics LiNbO3 thin films and studying their morphological and structural properties by sol-gel method for waveguide applications. Int. J. Chem. Mol. Eng. 10(5), 519–524 (2016)

    Google Scholar 

  25. J.A. Garibay-Alvarado, R. Farías, S.Y. Reyes-López, Sol-gel and electrospinning synthesis of lithium niobate-silica nanofibers. Coatings 9(3), 212 (2019)

    Article  CAS  Google Scholar 

  26. M. Liu, D. Xue, K. Li, Soft-chemistry synthesis of LiNbO3 crystallites. J. Alloys Compd. 449, 28–31 (2013)

    Article  CAS  Google Scholar 

  27. X. Wang, Y. Liang, S. Tian, W. Man, J. Jia, Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J. Cryst. Growth 375, 73–77 (2013)

    Article  CAS  Google Scholar 

  28. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras et al., Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation. Opt. Mater. 32(11), 1427–1434 (2010)

    Article  CAS  Google Scholar 

  29. A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, Preparation of lithium niobate films by metalorganic chemical vapor deposition with a lithium alkoxide source. J. Cryst. Growth 148(3), 324–326 (1995)

    Article  CAS  Google Scholar 

  30. D. Callejo, V. Bermudez, M.D. Serrano, E. Diéguez, Lithium niobate films on periodic poled lithium niobate substrates prepared by liquid phase epitaxy. J. Cryst. Growth 237, 596–601 (2002)

    Article  Google Scholar 

  31. V. Iyevlev, A. Kostyuchenko, M. Sumets, V. Vakhtel, Electrical and structural properties of LiNbO3 films, grown by RF magnetron sputtering. J. Mater. Sci.: Mater. Electron. 22(9), 1258–1263 (2011)

    CAS  Google Scholar 

  32. V.G. Deon, A. Thesing, L.R. Santana, V.C. Costa, M.O. Vaz, R.M. Silva et al., Synthesis of LiNbO3 nanocrystals by microwave-assisted hydrothermal method: formation mechanism and application to hydrogen evolution reaction. Chem. Papers 75(8), 3807–3815 (2021)

    Article  CAS  Google Scholar 

  33. M. Arivanandhan, A. Ekpunobi, Y. Hayakawa, Effect of deposition time on the chemical bath deposition method of ZnO thin films, AIP Conference Proceedings (2013).

  34. L.F. Koao, B.F. Dejene, H.C. Swart, T.E. Motaung, Dependent of reaction time on Cu-doped ZnO nanostructures prepared by chemical bath method. Int. J. Lumin. Appl. 5, 54–61 (2015)

    Google Scholar 

  35. M.A. Fakhri et al., Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J. Mater. Sci.: Mater. Electron. 28, 16728–16735 (2017)

    CAS  Google Scholar 

  36. M.A. Fakhri et al., Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B 121(1), 107–116 (2015)

    Article  CAS  Google Scholar 

  37. M.A. Fakhri, Y. Al-Douri, A. Bouhemadou, M. Ameri, Structural and optical properties of nanophotonic LiNbO3 under stirrer time effect. J. Opt. Commun. 39(3), 297–306 (2017)

    Article  Google Scholar 

  38. O.A. Castelo-González, M. Sotelo-Lerma, J.A. García-Valenzuela, Effect of reaction time and temperature on chemical, structural, optical, and photoelectrical properties of PbS thin films chemically deposited from the Pb (OAc) 2–NaOH–TU–TEA aqueous system. J. Electron. Mater. 46(1), 393–400 (2017)

    Article  CAS  Google Scholar 

  39. Y. Al-Douri, M.A. Fakhri, A. Bouhemadou, R. Khenata, M. Ameri, Stirrer time effect on optical properties of nanophotonic LiNbO3. Mater. Chem. Phys. 203, 243–248 (2018)

    Article  CAS  Google Scholar 

  40. Y. Al-Douri, M.A. Fakhri, N. Badi, C.H. Voon, Effect of stirring time on the structural parameters of nanophotonic LiNbO3 deposited by spin-coating technique. Optik 156, 886–890 (2018)

    Article  CAS  Google Scholar 

  41. M.A. Fakhri, B.A. Bader, F.G. Khalid, N.H. Numan, A.W. Abdulwahhab, U. Hashim, E.T. Salim, M.A. Munshid, Z.T. Salim, Optical and morphological studies of LiNbO3 nano and micro photonic structural. AIP Conf. Proc. 2045, 020017 (2018)

    Article  CAS  Google Scholar 

  42. M.K. Abood, M.H.A. Wahid, J.A. Saimon, E.T. Salim, Physical properties of Nb2O5 thin films prepared at 12M ammonium concentration. Int. J. Nanoelectron. Mater. 11, 237–244 (2018)

    Google Scholar 

  43. M.A. Fakhri, A.W. Abdulwahhab, M.A. Dawood, A.Q. Raheema, N.H. Numan, F.G. Khalid, E.T. Salim, Optical investigations of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials. Int. J. Nanoelectron. Mater. 11, 103–108 (2018)

    Google Scholar 

  44. N. Sofyan, S.P. Panjaitan, A.H. Yuwono, Growth of ZnO Nanorods Synthesized via Chemical Bath Deposition at Different Reaction Times and Precursor Concentrations. In IOP Conference Series: Materials Science and Engineering Vol. 553, No. 1, p. 012056. IOP Publishing (2019, November).

  45. S.B. Orgen, M.D.L. Balela, Effect of Reaction Time on the Morphology of CuO Nanostructured Electrode for Pseudocapacitor Application. In Journal of Physics: Conference Series, Vol. 1974, No. 1, p. 012006. IOP Publishing (2021).

  46. K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage. Appl. Phys. B 82, 419–422 (2006)

    Article  CAS  Google Scholar 

  47. L.H. Wang, D.R. Yuan, X.L. Duan, X.Q. Wang, F.P. Yu, Synthesis and characterization of fine lithium niobate powders by sol– gel method. Cryst. Res. Technol. 42, 321–324 (2007)

    Article  CAS  Google Scholar 

  48. M.K. Abood, E.T. Salim, J.A. Saimon, Impact of substrate type on the microstructure of H-Nb2o5 thin film at room temperature. Int. J. Nanoelectron. Mater. 11, 55–64 (2018)

    Google Scholar 

  49. S.R. Shafeeq, M.J.A. Razzaq, E.T. Salim, M.H.A. Wahid, Significance of niobium (V) oxide for practical applications: a review. Key Eng. Mater. 911, 89–95 (2022)

    Article  Google Scholar 

  50. J.W. Son, S.S. Orlov, B. Phillips, L. Hesselink, Pulsed laser deposition of single phase LiNbO3 thin film waveguides. J. Electroceram. 17, 591–595 (2006)

    Article  CAS  Google Scholar 

  51. D.A. Kiselev, R.N. Zhukov, A.S. Bykov, M.D. Malinkovich, Y.N. Parkhomenko, in Growth and Investigation of LiNbO3 Thin Films at Nanoscale by Scanning Force Microscopy, PIERS Proceedings, Moscow, Russia (2012)

  52. M.A. Fakhri, F.G. Khalid, E.T. Salim, Influence of annealing temperatures on Nb2O5 nanostructures prepared using Pulsed Laser Deposition method. J. Phys: Conf. Ser. 1795(1), 012063 (2021)

    CAS  Google Scholar 

  53. N. Ozer, C.M. Lampert, Electrochemical Lithium insertion in sol–gel deposited Li/nbO3 films. Sol. Energy Mater. Sol. Cells 39, 367–375 (1995)

    Article  Google Scholar 

  54. B. Knabe, D.S. Tze, T. Jungk, M. Svete, W. Assenmacher, W. Mader, K. Busem, Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method. Phys. Status Solidi (A) 208, 857–862 (2011)

    Article  CAS  Google Scholar 

  55. M.K. Abood, E.T. Salim, J.A. Saimon, A.A. Hadi, Electrical conductivity, mobility and carrier concentration in Nb2O5 films: effect of NH4OH molarity. Int. J. Nanoelectron. Mater. 14(3), 259–268 (2021)

    Google Scholar 

  56. V.S. Klimin, et al., Influence of annealing on nanocrystalline LiNbO3 films properties. International Conference on Micro-and Nano-Electronics 11022. SPIE, 2019.

  57. A. Sosunov, R. Ponomarev, O. Semenova, I. Petukhov, A. Volyntsev, Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. Opt. Mater. 88, 176–180 (2019)

    Article  CAS  Google Scholar 

  58. S.M. Taleb, M.A. Fakhri, S.A. Adnan, Physical Investigations of Nanophotonic LiNbO3 Films for Photonic Applications. Journal of Ovonic Research 15(4), 261–269 (2019)

    CAS  Google Scholar 

  59. Makram A. Fakhri, Najwan H. Numan, Zahraa S. Alshakhli, Marwa A. Dawood, Ahmed W. Abdulwahhab, Farah G. Khalid, U. Hashim, and Evan T. Salim, Physical investigations of nano and micro lithium-niobate deposited by spray pyrolysis technique, AIP Conference Proceedings 2045 (2018) 020015

  60. S.M. Taleb, M.A. Fakhri, S.A. Adnanm, Optical investigations of nanophotonic LiNbO3 films deposited by pulsed laser deposition method, defect and diffusion. Forum 398, 16–22 (2020)

    Google Scholar 

  61. L.Z. Mohammed, M.A. Fakhri, A.K. Abass, An overview of optical modulator based on nanophotonic lithium niobate film. AIP Conf. Proc. 2213(1), 020231 (2020)

    Article  CAS  Google Scholar 

  62. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Electrical conductivity inversion for Nb2O5 nanostructure thin films at different temperatures. Mater. Res. Express 6(12), 126459 (2019)

    Article  CAS  Google Scholar 

  63. Makram A Fakhri, Evan T. Salim, Ahmed W. Abdulwahhab, U. Hashim, Mohammed A Minshid, Zaid T. Salim, The Effect of Annealing Temperature on Optical and Photolumence Properties of LiNbO 3, Surface Review and Letters 26(10) (2019) 1950068.

  64. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, Z.T. Salim, U. Hashim, Heat treatment assisted-spin coating for LiNbO3 films preparation: their physical properties. J. Phys. Chem. Solids 131, 180–188 (2019)

    Article  CAS  Google Scholar 

  65. M. Abood, E.T. Salim, J.A. Saimon, Optical investigations of Nb2O5 at different teamperatures for optoelectronic devices. J. Ovonic Res. 15(2), 109–115 (2019)

    CAS  Google Scholar 

  66. R.O. Mahdi, M.A. Fakhri, E.T. Salim, Physical investigations of niobium oxide nanorod imploring laser radiation. Mater. Sci. Forum 1002, 211–220 (2020)

    Article  Google Scholar 

  67. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126, 891 (2020)

    Article  CAS  Google Scholar 

  68. R.A. Ismail, E.T. Salim, H.T. Halbos, Preparation of Nb2O5 nanoflakes by hydrothermal route for photodetection applications: the role of deposition time. Optik 245, 167778 (2021)

    Article  CAS  Google Scholar 

  69. A.D. Faisal, W.K. Khalef, Morphology and structure of CuO nanostructures grown via thermal oxidation on glass, silicon, and quartz at different oxidation temperatures. J. Mater. Sci.: Mater. Electron. 28(24), 18903–18912 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Applied Science Department, University of Technology-Iraq for the logistic support this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

ETS and WKK conceived of the presented idea. ETS and WKK supervised the finding of this work. All authors discussed the results and contributed equally to the final manuscript. RBF conducted the experiments. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Evan T. Salim.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhil, R.B., Salim, E.T. & Khalef, W.K. LiNbO3 thin films at different stirrer time: synthesis using chemical bath deposition (CBD) method. J Mater Sci: Mater Electron 33, 21688–21701 (2022). https://doi.org/10.1007/s10854-022-08957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08957-5

Navigation