Skip to main content
Log in

Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano and micro Lithium niobate (LiNbO3) are deposited on quartz substrates using the spray pyrolysis technique. Li2CO3, Nb2O5, Citric Acid and Ethylene Glycol are employed as the precursor compounds. The films are annealed at different temperatures, i.e. room temp., 400, 500 and 600 °C. The LiNbO3 are characterized by FE-SEM, X-ray diffraction and analyzed by UV–visible and photoluminescence. Grain size decreases as annealing temperatures increase. The energy band gap approaches 3.9 eV when the annealing temperature increases. Optical investigations of the band gap, refractive index and extinction coefficient are also elaborated. The results showed that the transmission is in the range 43–78 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Ievlev, M. Sumets, A. Kostyuchenko, N. Bezryadin, Dielectric losses and ac conductivity of Si–LiNbO3 heterostructures grown by the RF magnetron sputtering method. J. Mater. Sci. Mater. Electron. 24, 1651–1657 (2013)

    Article  Google Scholar 

  2. S. Kilburger, E. Millon, P. Di Bin, A. Boulle, R. Guinebretière, C. Di Bin, Properties of LiNbO3 based heterostructures grown by pulsed-laser deposition for optical waveguiding application. Thin Solid Films 518, 4654–4657 (2010)

    Article  Google Scholar 

  3. S. Kar, S. Verma, K. S. Bartwal, Growth Optimization and Optical Characteristics of Fe Doped LiNbO3 Crystals. Cryst. Growth Des. 2, 4424–4427 (2008)

    Article  Google Scholar 

  4. R. Grange, J. Choi, Ch. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forró, D. Psaltis, Lithium niobate nanowires synthesis, optical properties, and manipulation. Appl. Phys. Lett. 95, 143105–143106 (2009)

    Article  Google Scholar 

  5. G. Pozza, S. Kroesen, G. Bettella, A. Zaltron, M. Esseling, G. Mistura, P. Sartori, E. Chiarello, M. Pierno, C. Denz, C. Sada, T-junction droplet generator realised in lithium niobate crystals by laser ablation. Optofluid. Microfluid. Nanofluid 1, 34–42 (2014)

    Article  Google Scholar 

  6. A.E.A. Mohamed, M.A. Metawe’e, A.N.Z. Rashed, A.M. Bendary, Recent Progress of LiNbO3 Based Electrooptic Modulators with Non Return to Zero (NRZ) Coding in High Speed Photonic Networks. Int. J. Inf. Commun. Technol. Res. 1, 55–63 (2011)

    Google Scholar 

  7. M.A.R. Franco, L.C. de Vasconcellos, J.M. Machado, Coupling efficiency between optical fiber and Ti:LiNbO3 channel waveguide. Telecomunicações 7, 54–59 (2004)

    Google Scholar 

  8. S. Kroesen, W. Horn, J. Imbrock, C. Denz, Electro–optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express 22, 23339–23348 (2014)

    Article  Google Scholar 

  9. A. Bouchier, G. Lucas-Leclin, P. Georges, Frequency doubling of an efficient continuous Wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 Waveguide. Opt. Express 13, 6974–6979 (2005)

    Article  Google Scholar 

  10. G. Masada, Efficient generation of second harmonic wave with periodically poled MgO:LiNbO3. Tamagawa Univ. Quantum ICT Res. Inst. Bull. 1, 25–28 (2011)

    Google Scholar 

  11. L. Guo-Hui, J. Hai-Ling, X. Xin-Ye, Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides. Chin. Phys. B 20, 064201–064210 (2011)

    Article  Google Scholar 

  12. T. Zhang, S. Tian, D.Q. Liu, C.G. Tong, C. Kang, Crystal growth and holographic properties of LiNbO3:Hf:Ce:Cu. Proc. SPIE 9271, 92711–92718 (2014)

    Google Scholar 

  13. Y. Kong, Sh Liu, J. Xu, Recent advances in the photorefraction of doped lithium niobate crystals. Materials 5, 1954–1971 (2012)

    Article  Google Scholar 

  14. R.K. Banyal, B.R. Prasad, Holographic recording in Fe:Ce: Ti doped LiNbO3 crystal. Opt. Commun. 274, 300–306 (2007)

    Article  Google Scholar 

  15. G. Bu, D. Ciplys, M.S. Shurb, G. Namkoong, W.A. Doolittle, W.D. Hunt, Leaky surface acoustic waves in Z-LiNbO3 substrates with epitaxial AIN overlays. Appl. Phys. Lett. 85, 3313–3315 (2004)

    Article  Google Scholar 

  16. D. Yudistira, S. Benchabane, D. Janner, V. Pruneri, Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes. Appl. Phys. Lett. 95, 052901-1–052901-3 (2009)

    Article  Google Scholar 

  17. D. Janner, D. Tulli, M. Jofre, D. Yudistira, S. Balsamo, M. Belmonte, V. Pruneri, Domain inverted acousto- and electrooptic devices and their application to optical communication. sensing, laser sources, and quantum key distribution. IEEE J. Sel. Top. Quant. Elelctron.s 19, 3400610–3400620 (2013)

    Google Scholar 

  18. M. Liu, D. Xue, Ch. Luo, Wet chemical synthesis of pure LiNbO3 powders from simple niobium oxide Nb2O5. J. Alloy. Compd. 426, 118–122 (2006)

    Article  Google Scholar 

  19. A. Baba, C.T. Searfass, B.R. Tittmann, High temperature ultrasonic transducer up to 1000 & #xB0;C using lithium niobate single crystal. Appl. Phys. Lett. 97, 232901–232903 (2010)

    Article  Google Scholar 

  20. S.-W. Jung, Y.-S. Kim, S.-H. Jeong, Y.-I. In, K.-H. Kim, LiNbO3 ferroelectric properties on high{and moderate{doped Si substrates. J Korean Phys. Soc. 42, S1386–S1390 (2003)

    Google Scholar 

  21. P. Prapitpongwanich, K. Pengpat, Ch. Rüssel, Phase separation and crystallization in LiNbO3/SiO2 glasses. Mater. Chem. Phys. 113, 913–918 (2009)

    Article  Google Scholar 

  22. V. Bouquet, E.R. Leite, E. Longo, J.A. Varela, M.G. Viry, A. Perrin, Multi-layered LiNbO3 films prepared by a polymeric precursor method. J. Eur. Ceram. Soc. 21, 1521–1524 (2001)

    Article  Google Scholar 

  23. D.A. Kiselev, R.N. Zhukov, S.V. Ksenich, A.P. Kozlova, A.S. Bykov, M.D. Malinkovich, YuN Parkhomenko, D.A. Kiselev, R.N. Zhukov, S.V. Ksenich, A.P. Kozlova, A.S. Bykov, M.D. Malinkovich, YuN Parkhomenko, Investigation of the ferroelectric properties and dynamics of nanodomains in LiNbO3 thin films grown on Si (100) substrate by scanning probe microscopy techniques. Thin Solid Films 556, 142–145 (2014)

    Article  Google Scholar 

  24. O. Gayer, Z. Sacks, E. Galun, A. Arie, Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91, 343–348 (2008)

    Article  Google Scholar 

  25. A.R. Kamalin, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)

    Article  Google Scholar 

  26. A.Z. Simoesa, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 24, 1607–1613 (2004)

    Article  Google Scholar 

  27. L.H. Wang, D.R. Yuan, X.L. Duan, X.Q. Wang, F.P. Yu, Synthesis and characterization of fine lithium niobate powders by sol-gel method. Cryst. Res. Technol. 42, 321–324 (2007)

    Article  Google Scholar 

  28. Y. Lu, P. Dekker, L.H. Wang, D.R. Yuan, X.L. Duan, X.Q. WAng, F.P. Yu, Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy. J. Cryst. Growth 311, 1441–1445 (2009)

    Article  Google Scholar 

  29. M. Liu, D. Xue, K. Li, Soft-chemistry synthesis of LiNbO3 crystallites. J. Alloy. Compd. 449, 28–31 (2008)

    Article  Google Scholar 

  30. M. Nyman, T.M. Anderson, P.P. Provencio, Comparison of aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders. Cryst. Growth Des. 9, 1036–1040 (2009)

    Article  Google Scholar 

  31. R. Ageba, Y. Kadota, T. Maeda, N. Takiguchi, T. Morita, Ultrasonically-assisted hydrothermal method for ferroelectric material synthesis. J. Korean Phys. Soc. 57, 918–923 (2010)

    Article  Google Scholar 

  32. E.T. Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87, 349–353 (2013)

    Article  Google Scholar 

  33. E.T. Salim, M.S. Al Wazny, M.A. Fakhri, Glancing Angle Reactive Pulsed Laser Deposition (grpld) for Bi2O3/Si Heterostructure. Mod. Phys. Lett. B 27, 1350122-1–1350122-7 (2013)

    Article  Google Scholar 

  34. R.A. Ismail, B.G. Rasheed, E.T. Salm, M. Al-Hadethy, Transparent and conducting ZnO films prepared by reactive pulsed laser deposition. J. Mater. Sci. Mater. Electron. 18, 397–400 (2007)

    Article  Google Scholar 

  35. R.A. Ismail, B.G. Rasheed, E.T. Salm, M. Al-Hadethy, High transmittance–low resistivity cadmium oxide films grown by reactive pulsed laser deposition. J. Mater. Sci. Mater. Electron. 18, 1027–1030 (2007)

    Article  Google Scholar 

  36. B.K.H. Al-Maiyaly, I.H. Khudayer, A.J. Ibraheim, Effect ambient oxidation on structural and optical properties of copper oxide thin films. Int. J. Innovative Res. Sci., Eng. Technol. 3, 8695–8700 (2014)

    Google Scholar 

  37. P. Kumar, S.M. Babu, S. Perero, R.L. Sai, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray diraction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. Pramana J. Phys. 75, 1035–1040 (2010)

    Article  Google Scholar 

  38. I.-K. Jeong, S. Park, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a rietveld analysis. J. Korean Phys. Soc. 59, 2756–2759 (2011)

    Article  Google Scholar 

  39. S. Shandilya, A. Sharma, M. Tomar, V. Gupta, Optical properties of the c-axis oriented LiNbO3 thin film. Thin Solid Films 520, 2142–2146 (2012)

    Article  Google Scholar 

  40. K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. ChemTech Res. 6, 3071–3077 (2014)

    Google Scholar 

  41. M.D. Femi, A. Ohwofosirai, A. Sunday, O.S.B.A.E.F.I. Ezema, R.U. Osuji, Variation of the optical conductivity dielectric function and the energy bandgap of CdO using cadmium acetate dehydrate. Int. J. Adv. Electr. Electron. Eng. 2, 331–337 (2014)

    Google Scholar 

  42. I.-S. Bae, S.-J. Cho, Electrical mechanical and optical properties of the organic–inorganic hybrid-polymer thin films deposited by PECVD. Thin Solid Films 516, 3577–3581 (2008)

    Article  Google Scholar 

  43. P. Li-Ping, F. Liang, W. Wei-Dong, W. Xue-Min, L. Li, The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films. Chin. Phys. B 21, 047305–047309 (2012)

    Article  Google Scholar 

  44. N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela, Epitaxial growth of LiNbO3 thin films in a microwave oven. Thin Solid Films 436, 213–219 (2003)

    Article  Google Scholar 

  45. D.E. Zelmon, D.L. Small, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3323 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makram A. Fakhri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, M.A., Hashim, U., Salim, E.T. et al. Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method. J Mater Sci: Mater Electron 27, 13105–13112 (2016). https://doi.org/10.1007/s10854-016-5455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5455-8

Keywords

Navigation