Skip to main content

Advertisement

Log in

Preparation and performance of rose stalk-like niobium nitride nanofibers for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rose stalk-like Nb4N5 fibers were prepared by electrospinning, solvothermal method and ammonia reduction technology. The composition and morphology were characterized. The results showed that the corresponding XRD (X-ray diffractometer) pattern of the sample was indexed to tetragonal Nb4N5, and it existed as NbNxO1−x solid solution, in which Nb ions exist in the form of + 3 and + 5. The abundant valence states made Nb ions undergo reversible proton insertion/chemical adsorption in the conductive channels of the Nb4N5 nanofibers. The Nb4N5 nanofibers presented a rose stalk-like structure, and thus its specific surface area was high to 76.42 m2 g−1 with pore diameter of 13.2 nm. The specific capacitance of the Nb4N5||Nb4N5 symmetric supercapacitor device reached to 139.03 F g−1 at the current density of 10 mA g−1. When the energy density was 12.60 Wh kg−1, the power density of the supercapacitors was 2.16 kW kg−1. It was indicated that the rose stalk-like structure gave the Nb4N5 nanofibers a larger contact area which was conducive to the construction of a conductive network, and thus the electron transmission rate was improved, thereby improving the electrochemical performance of the Nb4N5 fibers electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. M. Manuraj, S. Jyothilakshmi, K.N. Narayanan Unni et al., J. Mater. Sci. 31, 20571–20577 (2020). https://doi.org/10.1007/s10854-020-04577-z

    Article  CAS  Google Scholar 

  2. X.D. Liu, G.Y. Liu, Y. Liu et al., Dalton Trans. 46, 10935 (2017). https://doi.org/10.1039/c7dt02021j

    Article  CAS  Google Scholar 

  3. S.S. Gao, Y.K. Tang, L. Wang et al., ACS Sustain. Chem. Eng. 6, 3255 (2018). https://doi.org/10.1021/acssuschemeng.7b03421

    Article  CAS  Google Scholar 

  4. D.D. Zhang, J. Li, Z. Su et al., J. Adv. Ceramic. 7, 246 (2018). https://doi.org/10.1007/s40145-018-0276-2

    Article  CAS  Google Scholar 

  5. V.V. Anusha Thampi, U. Nithiyanantham, A.K. Nanda Kumar et al., J. Mater. Sci. 29, 12457–12465 (2018). https://doi.org/10.1007/s10854-018-9364-x

    Article  CAS  Google Scholar 

  6. D. Zhao, X. Yuan, R. Wang et al., J. Mater. Sci. 32, 21197–21205 (2021). https://doi.org/10.1007/s10854-021-06619-6

    Article  CAS  Google Scholar 

  7. B.B. Wei, F.W. Ming, H.F. Liang et al., J. Power Sources 481, 228842 (2021). https://doi.org/10.1016/j.jpowsour.2020.228842

    Article  CAS  Google Scholar 

  8. Y.Y. Su, L.F. Wang, D. Liu et al., Chem. Asian J. 15, 1609 (2020). https://doi.org/10.1002/asia.202000267

    Article  CAS  Google Scholar 

  9. B. Gao, X. Xiao, J. Su et al., Appl. Surf. Sci. 383, 57 (2016). https://doi.org/10.1016/j.apsusc.2016.04.173

    Article  CAS  Google Scholar 

  10. J.Y. Ma, X.T. Guo, H.G. Xue et al., Chem. Eng. J. 380, 122428 (2020). https://doi.org/10.1016/j.cej.2019.122428

    Article  CAS  Google Scholar 

  11. H.L. Cui, G.L. Zhu, X.Y. Liu et al., Adv. Sci. 2, 1500126 (2015). https://doi.org/10.1002/advs.201500126

    Article  CAS  Google Scholar 

  12. H. Shen, B.B. Wei, D.F. Zhang et al., Mater. Lett. 229, 17 (2018). https://doi.org/10.1016/j.matlet.2018.06.052

    Article  CAS  Google Scholar 

  13. P. Chen, S.Y. Hu, T. Zhou et al., Chem. Eng. J. 306, 139 (2016). https://doi.org/10.1016/j.cej.2016.07.056

    Article  CAS  Google Scholar 

  14. Y.G. Wang, Y.F. Song, Y.Y. Xia, Chem. Soc. Rev. 45, 5925 (2016). https://doi.org/10.1039/c5cs00580a

    Article  CAS  Google Scholar 

  15. X.Y. Deng, S. Zhu, J.J. Li et al., Carbon 143, 728 (2019). https://doi.org/10.1016/j.carbon.2018.11.055

    Article  CAS  Google Scholar 

  16. P.H. Yang, D.L. Chao, C.R. Zhu et al., Adv. Sci. 3, 1500299 (2016). https://doi.org/10.1002/advs.201500299

    Article  CAS  Google Scholar 

  17. X.M. Hou, Q. Li, L.Q. Zhang et al., J. Power Sources 396, 326 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.033

    Article  CAS  Google Scholar 

  18. M.X. Chu, M.T. Li, Z.L. Han et al., R .Soc. Open Sci. 6, 190132 (2019). https://doi.org/10.1098/rsos.190132

    Article  CAS  Google Scholar 

  19. B. Zhu, Y. Cui, D.F. Lv et al., Appl. Surf. Sci. 533, 147439 (2020). https://doi.org/10.1016/j.apsusc.2020.147439

    Article  CAS  Google Scholar 

  20. C.L. Dong, X. Wang, X.Y. Liu et al., RSC Adv. 6, 81290 (2016). https://doi.org/10.1039/c6ra13647h

    Article  CAS  Google Scholar 

  21. X.Y. Yuan, R.Q. Wang, S.Y. Huang et al., Mater. Sci. Eng. 269, 115156 (2021). https://doi.org/10.1016/j.mseb.2021.115156

    Article  CAS  Google Scholar 

  22. J. Zhao, X.X. Zou, L.J. Zhou et al., Dalton Trans. 42, 14357 (2013). https://doi.org/10.1039/c3dt51754c

    Article  CAS  Google Scholar 

  23. J. Zhao, Y.P. Liu, M.H. Fan et al., Inorg. Chem. Fronti. 2, 198 (2015). https://doi.org/10.1039/c4qi00191e

    Article  CAS  Google Scholar 

  24. X.J. Jin, C.L. Liu, J. Xu et al., RSC Adv. 4, 35546 (2014). https://doi.org/10.1039/c4ra06101b

    Article  CAS  Google Scholar 

  25. C. Lei, F. Han, D. Li et al., Nanoscale 5, 1168–1175 (2013). https://doi.org/10.1039/c2nr33043a

    Article  CAS  Google Scholar 

  26. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl Mater Interfaces 4, 4484 (2012). https://doi.org/10.1021/am301162p

    Article  CAS  Google Scholar 

  27. M.F. El-Kady, V. Strong, S. Dubin et al., Science 335, 1326 (2012). https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  28. T.Q. Nguyen, C. Breitkopf, J. Electrochem. Soc. 165, E826 (2018). https://doi.org/10.1149/2.1151814jes

    Article  CAS  Google Scholar 

  29. P.A. Basnayaka, M.K. Ram, Conduct. Polymer Hybrids 2017, 165 (2017). https://doi.org/10.1007/978-3-319-46458-9_6

    Article  Google Scholar 

  30. Y. Xie, C. Xia, H. Du et al., J. Power Sources 286, 561–570 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.025

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Hebei Natural Science Foundation (Grant Numbers E2021209120).

Author information

Authors and Affiliations

Authors

Contributions

KX: Conceptualization, Synthesis, Performance testing, Writing-original draft. SC: Synthesis, Performance testing, Writing—review. SL: Investigation, Methodology, Synthesis. DL: Conceptualization, Writing- original draft & review & editing. SH: Synthesis, Investigation. YC: Resources, Formal analysis. YC: Methodology, Performance testing. YW: Resources, Formal analysis. HW: Idea and design of this research, Writing- original draft & review & editing.

Corresponding authors

Correspondence to Dongfeng Lv or Hengyong Wei.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 317 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Cui, S., Liu, S. et al. Preparation and performance of rose stalk-like niobium nitride nanofibers for supercapacitor. J Mater Sci: Mater Electron 33, 21384–21395 (2022). https://doi.org/10.1007/s10854-022-08931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08931-1

Navigation