Skip to main content
Log in

Preparation and characterization of BaTiO3natural muscovite composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Natural muscovite (nM) exhibiting magnetic vortex states are ball milled into fine powder and mixed in different relative ratios (weight %) with ferroelectric barium titanate (BaTiO3) synthesized by solid-state reaction. The mixture is ball milled and pressed into pellets and then sintered at 600 °C for 2 h. The composite samples of formula, (1 − x)BaTiO3-(x)nM, where x = 0.1, 0.2, 0.3 are prepared for studying its multifunctional properties. The composite samples are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dielectric spectroscopy, ferroelectric polarization and magnetization measurements performed at room temperature. The XRD studies confirm the presence of only the constituent ferroelectric BaTiO3 and ferromagnetic nM phases and no other additional phases. The dielectric constant of the prepared (1 − x)BaTiO3-(x)nM composites exhibits relatively least dispersion at higher frequencies (> 100 kHz). Further, the composite samples exhibit ferroelectric polarization hysteresis and also considerable leakage current which is explainable by the space charge limited conduction (SCLC) mechanism. Out of the three composite samples, 0.7BaTiO3–0.3 nM shows ferromagnetic behavior with signatures for the presence of magnetic vortex states that is similar to that of the pure nM single crystal sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available. The data can be shared by the corresponding author upon reasonable request.

References

  1. C. Sang-Wook, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 6(1), 13–20 (2007). https://doi.org/10.1038/nmat1804

    Article  CAS  Google Scholar 

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  4. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994). https://doi.org/10.1080/00150199408245120

    Article  Google Scholar 

  5. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007). https://doi.org/10.1021/nl063039w

    Article  CAS  Google Scholar 

  6. J.-H. Lee, P. Murugavel, H. Ryu, D. Lee, J.Y. Jo, J.W. Kim, H.J. Kim, K.H. Kim, Y. Jo, M.-H. Jung, Y.H. Oh, Y.-W. Kim, J.-G. Yoon, J.-S. Chung, T.W. Noh, Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv. Mater. 18, 3125–3129 (2006). https://doi.org/10.1002/adma.200601621

    Article  CAS  Google Scholar 

  7. N.A. Spaldin, M. Feibig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). https://doi.org/10.1126/science.1113357

    Article  CAS  Google Scholar 

  8. H.T. Langhammer, T. Muller, T. Walther, R. Bottcher, D. Hesse, E. Pippel, S.G. Ebbinghaus, Ferromagnetic properties of barium titanate ceramics doped with cobalt, iron, and nickel. J. Mater. Sci. 51, 10429–10441 (2016). https://doi.org/10.1007/s10853-016-0263-3

    Article  CAS  Google Scholar 

  9. F. Lin, W. Shi, Magnetic properties of transition-metal-codoped BaTiO3 systems. J. Alloys Compd 475, 64–69 (2009). https://doi.org/10.1016/j.jallcom.2008.08.037

    Article  CAS  Google Scholar 

  10. J.S. Lee, Z.G. Khim, Y.D. Park, D.P. Norton, N.A. Theodoropoulou, A.F. Hebard, J.D. Budai, L.A. Boatner, S.J. Pearton, R.G. Wilson, Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3. Solid-State Electron 47, 2225–2230 (2003). https://doi.org/10.1016/S0038-1101(03)00202-8

    Article  CAS  Google Scholar 

  11. N.I. Khalitov, R.I. Khaibullin, V.F. Valeev, E.N. Dulov, N.G. Ivoilov, L.R. Tagirov, S. Kazan, A.G. Sale, F.A. Mikailzade, Structural and magnetic studies of Co and Fe implanted BaTiO3 crystals. Nucl Instrum Methods Phys Res B 272, 104–107 (2012). https://doi.org/10.1016/j.nimb.2011.01.042

    Article  CAS  Google Scholar 

  12. A. Rajamani, G.F. Dionne, D. Bono, C.A. Ross, Faraday rotation, ferromagnetism, and optical properties in Fe-doped BaTiO3. J. Appl. Phys. 98, 063907 (2005). https://doi.org/10.1063/1.2060945

    Article  CAS  Google Scholar 

  13. A. Mazur, O.F. Schirme, S. Mendricks, Optical absorption and light-induced charge transport of Fe2+ in BaTiO3. Appl. Phys. Lett. 70, 2395 (1997). https://doi.org/10.1063/1.118883

    Article  CAS  Google Scholar 

  14. Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, M. Yasir Rafique, Structural and multiferroic properties of Fe-doped Ba0.5Sr0.5TiO3 solids. J. Magn. Magn. Mater. 325, 24–28 (2013). https://doi.org/10.1016/j.jmmm.2012.08.023

    Article  CAS  Google Scholar 

  15. L. Yang, H. Qiu, L. Pan, Z. Guo, Xu. Mei, J. Yin, X. Zhao, Magnetic properties of BaTiO3 and BaTi1−xMxO3 (M = Co, Fe) nanocrystals by hydrothermal method. J. Magn. Magn. Mater. 350, 1–5 (2014). https://doi.org/10.1016/j.jmmm.2013.09.036

    Article  CAS  Google Scholar 

  16. S. Li, J.T. Vijay, C. O’Connor, V. Harris, E. Carpenter, Cobalt-ferrite nanoparticles: structure, cation distributions, and magnetic properties. J. Appl. Phys. 87(9), 6223–6225 (2000). https://doi.org/10.1063/1.372661

    Article  CAS  Google Scholar 

  17. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marre, A.S. Siri, P. Nanni, Preparation of multiferroic composites of BaTiO3—Ni0.5Zn0.5Fe2O4 ceramics. J. Eur. Ceram. Soc. 26, 3031–3036 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.022

    Article  CAS  Google Scholar 

  18. L. Mitoseriu, I. Pallecchi, V. Buscaglia, A. Testino, C.E. Ciomaga, A. Stancu, Magnetic properties of the BaTiO3–Ni0.5Zn0.5Fe2O4 multiferroic composites. J. Magn. Magn. Mater. 316, e603–e606 (2007). https://doi.org/10.1016/j.jmmm.2007.03.036

    Article  CAS  Google Scholar 

  19. Y.Q. Liu, Y.H. Wu, D. Li, Y.J. Zhang, J. Zhang, J.H. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites. J. Mater. Sci. Mater. Electr. 24(6), 1900–1904 (2013). https://doi.org/10.1007/s10854-012-1032-y

    Article  CAS  Google Scholar 

  20. D. Padmapriya, D. Dhayanithi, M.T. Rahul, K. Nandakumar, N.V. Giridharan, Study of room-temperature magnetoelectric coupling in (1–x)BaTiO3 and (x)NiFe2O4 multiferroic composites. Appl. Phys. A 127, 293 (2021). https://doi.org/10.1007/s00339-021-04431-x

    Article  CAS  Google Scholar 

  21. V. Sontevska, G. Jovanovski, P. Makreski, A. Raskovskaa, B. Soptrajanova, Minerals from Macedonia. XX. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals. Acta Chim. Slov. 55, 757–766 (2008)

    CAS  Google Scholar 

  22. M. Kirubanithy, N. Sivanantham, N. Gopalakrishnan, K. Balamurugan, Effect of heat treatment in the optical properties of layered muscovite single-crystal sheets. Bull. Mater. Sci. 43, 87 (2020). https://doi.org/10.1007/s12034-020-2049-0

    Article  CAS  Google Scholar 

  23. M. Kirubanithy, N. Gopalakrishnan, K. Balamurugan, Magnetic vortex state in a layered muscovite sheet silicate single crystal. Mater. Res. Express 5, 096103 (2018). https://doi.org/10.1088/2053-1591/aad509

    Article  CAS  Google Scholar 

  24. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  25. Haiyan Chen, Hang Luo, Xi. Yuan, Dou Zhang, Constructing a correlation between ferroelectricity and grain sizes in Hf0.5Zr0.5O2 ferroelectric thin films. CrystEngComm 24, 1731–1737 (2022)

    Article  CAS  Google Scholar 

  26. W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, S. Zhao, Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater. Struct. 23, 085030 (2014). https://doi.org/10.1088/0964-1726/23/8/085030

    Article  CAS  Google Scholar 

  27. S. Divya, T. Shakthi, J. Hemalatha, Synthesis and ferroelectric investigations of poly (vinylidene fluoride-co-hexafluoropropylene)-Mg(NO3)2 films. J. Appl. Polym. Sci. 133, 44008 (2016). https://doi.org/10.1002/app.44008

    Article  CAS  Google Scholar 

  28. A.A. Saif, Y.C. Teh, Correlation of Ba: Gd ratio and film thickness to the dielectric, ferroelectric and leakage current mechanism of nanostructure Ba1−xGdxTiO3 thin films. Phys. B: Condens. Matter 612, 412824 (2021). https://doi.org/10.1016/j.physb.2021.412824

    Article  CAS  Google Scholar 

  29. M.A. McCormick, E.B. Slamovich, Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films. J. Eur. Ceram. Soc. 23, 2143–2152 (2003). https://doi.org/10.1016/S0955-2219(03)00022-0

    Article  CAS  Google Scholar 

  30. Du. Hui, W. Liang, Y. Li, M. Gao, Y. Zhang, C. Chen, Y. Lin, Leakage properties of BaTiO3 thin films on polycrystalline Ni substrates grown by polymer-assisted deposition with two-step annealing. J. Alloys Compd. 642, 166–171 (2015). https://doi.org/10.1016/j.jallcom.2015.04.025

    Article  CAS  Google Scholar 

  31. L. Zhang, J. Zhai, W. Mo, Xi. Yao, The dielectric and leakage current behavior of CoFe2O4-BaTiO3 composite films prepared by combining method of sol-gel and electrophoretic deposition. Solid State Sci. 12, 509–514 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.12.016

    Article  CAS  Google Scholar 

  32. R. Grigalaitis, M.M. Vijatovic Petrovic, J.D. Bobic, A. Dzunuzovic, R. Sobiestianskas, A. Brilingasa, B.D. Stojanovic, J. Banys, Dielectric and magnetic properties of BaTiO3—NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014). https://doi.org/10.1016/j.ceramint.2013.11.069

    Article  CAS  Google Scholar 

  33. A. Tiwari, A. Tripathi, A.P. Pathak, Swift heavy ion irradiation of muscovite and biotite substrates. Nucl Instrum Methods Phys Res B 343, 9–14 (2015). https://doi.org/10.1016/j.nimb.2014.11.001

    Article  CAS  Google Scholar 

Download references

Funding

Dr. K. Balamurugan acknowledges Department of Science and Technology (DST), Ministry of Science and Technology, Government of India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award and Research Grant (IFA14-PH91), and also National Institute of Technology Tiruchirappalli for hosting as an INSPIRE Faculty. Also, the author would like to thank the National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2022R1A2C1004283) and also appreciate the Core Research Support Center for Natural Products and Medical Materials (CRCNM) at Yeungnam University, South Korea.

Author information

Authors and Affiliations

Authors

Contributions

MK: Experiment, Analysis, Manuscript writing. SD: Analysis, Review, Editing. TH: Review, Editing. NG: Supervision, Review, Editing. KB: Final review, Funding, Analysis, Editing, Approval.

Corresponding authors

Correspondence to Tae Hwan Oh or K. Balamurugan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubanithy, M., Divya, S., Oh, T.H. et al. Preparation and characterization of BaTiO3natural muscovite composites. J Mater Sci: Mater Electron 33, 20656–20667 (2022). https://doi.org/10.1007/s10854-022-08877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08877-4

Navigation