Skip to main content
Log in

Structure, morphology, sintering behavior, and microwave dielectric properties of 6Ca0.61Nd0.26TiO3–4Nd(Zn1/2Ti1/2)O3 ceramics prepared via citrate precursor method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports a controllable synthesis of 6Ca0.61Nd0.26TiO3–4Nd(Zn1/2Ti1/2)O3 (6CNT–4NCT) nanopowders by the citrate precursor method. The structural and micromorphological features of the nanoparticles were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques, respectively. The sintering behavior and microwave dielectric characteristics were studied in the form of the bulk ceramics derived from the as-synthesized powders. The results showed the direct formation of single phase 6CNT–4NCT without any impurity after calcining the citrate precursor at 700 °C. Moreover, the as-synthesized powder had good dispersion and high sinterability, which were beneficial for sintering of ceramics. The 6CNT–4NCT ceramics were well sintered at 1220 °C and possessed attractive dielectric properties: εr = 58.2, Q × f = 57,150 GHz, and τf =  + 1.7 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Research data policy

These policies make it easier for researchers to share data and files that support their publications and improve author service and experience.

References

  1. H.C. Yang, S.R. Zhang, H.Y. Yang, Q.Y. Wen, Q. Yang, G. Lin, Q. Zhao, E.Z. Li, J. Adv. Ceram. 10, 885–932 (2021)

    Article  CAS  Google Scholar 

  2. C.Z. Yin, B. Liu, Z.Z. Yu, L.L. Shu, L.J. Liu, Y. Chen, C.C. Li, J. Adv. Ceram. 10, 108–119 (2021)

    Article  CAS  Google Scholar 

  3. K.P. Surendran, S. Solomon, M.R. Varma, P. Mohanan, M.T. Sebastian, J. Mater. Res. 17, 2561–2566 (2002)

    Article  CAS  Google Scholar 

  4. S. Nomura, Ferroelectrics 49, 61–70 (1983)

    Article  CAS  Google Scholar 

  5. A. Kan, H. Ogawa, H. Ohsato, J. Alloys Compd. 337, 303–308 (2002)

    Article  CAS  Google Scholar 

  6. X.J. Cui, L. Liu, H. Li, F. Liu, L.J. Cheng, S.J. Liu, Mater. Res. Express 7, 016306 (2020)

    Article  CAS  Google Scholar 

  7. J.Q. Lv, E.C. Xiao, X.H. Li, X.L. Dong, Y. Chen, Z.X. Yue, F. Shi, Ceram. Int. 46, 3715–3724 (2020)

    Article  CAS  Google Scholar 

  8. X.H. Zhang, N. Chang, J. Zhang, Y.Y. Zhou, Z.X. Yue, L.T. Li, J. Alloys Compd. 819, 153011 (2020)

    Article  CAS  Google Scholar 

  9. C. Feng, X. Zhou, B.J. Tao, H.T. Wu, S.F. Huang, J. Adv. Ceram. 11, 392–402 (2022)

    Article  CAS  Google Scholar 

  10. Z.B. Feng, B.J. Tao, W.F. Wang, H.Y. Liu, H.T. Wu, Z.L. Zhang, J. Alloys Compd. 822, 153634 (2020)

    Article  CAS  Google Scholar 

  11. J. Fan, Q. Zhao, K. Du, F. Wang, X.H. Wang, W.Z. Lu, L. Wen, J. Am. Ceram. Soc. 103, 3231–3237 (2020)

    Article  CAS  Google Scholar 

  12. Z. Sun, Q.Y. Li, S.Y. Xie, W.X. Liu, Y.M. Han, Mater. Lett. 261, 126994 (2020)

    Article  CAS  Google Scholar 

  13. X.Q. Hu, J. Jiang, J.Z. Wang, L. Gan, T.J. Zhang, J. Mater. Sci. Mater. Electron. 31, 2544–2550 (2020)

    Article  CAS  Google Scholar 

  14. J.M. Li, C.G. Fan, S.L. Ran, Ceram. Int. 42, 607–614 (2016)

    Article  CAS  Google Scholar 

  15. G.H. Chen, Y. Yang, J. Mater. Sci. Mater. Electron. 24, 1012–1017 (2013)

    Article  CAS  Google Scholar 

  16. L. Hao, G.J. Shu, F.C. Meng, H.X. Lin, Ceram. Int. 44, 13139–13144 (2018)

    Article  CAS  Google Scholar 

  17. Z.Z. Weng, H. AminiRastabi, Z.X. Xiong, H. Xue, J. Alloys Compd. 725, 1063–1068 (2017)

    Article  CAS  Google Scholar 

  18. W.T. Xie, Q.X. Jiang, Q.L. Cao, X.S. Xu, H.Q. Zhou, J. Mater. Sci. Mater. Electron. 29, 9745–9750 (2018)

    Article  CAS  Google Scholar 

  19. Y.A. Ivanova, E.F. Sutormina, N.A. Rudina, A.V. Nartova, L.A. Isupova, Catal. Commun. 117, 43–48 (2018)

    Article  CAS  Google Scholar 

  20. A.O. Turky, M.M. Rashad, M. Bechelany, Mater. Des. 90, 54–59 (2016)

    Article  CAS  Google Scholar 

  21. R.F. Zhu, B.J. Fang, X.Y. Zhao, S. Zhang, Z.H. Chen, J.N. Ding, H.S. Luo, J. Alloys Compd. 735, 496–509 (2018)

    Article  CAS  Google Scholar 

  22. S.A. Kirillova, I.V. Romanova, T.V. Lisnycha, A.V. Potapenko, Electrochim. Acta 286, 163–171 (2018)

    Article  CAS  Google Scholar 

  23. T. Dippong, E.A. Levei, C.L. Lengauer, A. Daniel, D. Toloman, O. Cadar, Mater. Charact. 163, 110268 (2020)

    Article  CAS  Google Scholar 

  24. W.A. Wani, S. Kundu, K. Ramaswamy, H. Venkataraman, J. Alloys Compd. 846, 156334 (2020)

    Article  CAS  Google Scholar 

  25. N.I. Abu-Elsaad, S.A. Mazen, A.Y. Sleem, Ceram. Int. 48, 14210–14223 (2022)

    Article  CAS  Google Scholar 

  26. P. Thakur, D. Chahar, A. Thakur, Adv. Nano Res. 12, 415–426 (2022)

    Google Scholar 

  27. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, F. Goga, G. Borodi, L.B. Tudoran, Ceram. Int. 45, 7458–7467 (2019)

    Article  CAS  Google Scholar 

  28. M.K. Lee, S. Kang, Ceram. Int. 45, 6665–6672 (2019)

    Article  CAS  Google Scholar 

  29. B. Hakki, P. Coleman, IEEE Trans. Microw. Theory Tech. MTT-8, 402–410 (1960)

    Article  Google Scholar 

  30. W. Courtney, IEEE Trans. Microw. Theory Tech. MTT-18, 476–485 (1970)

    Article  Google Scholar 

  31. L.A.P. Maqueda, M.J. Diánez, F.J. Gotor, M.J. Sayagués, C. Real, J.M. Criado, J. Mater. Chem. 13, 2234–2241 (2003)

    Article  Google Scholar 

  32. R.D. Purohita, A.K. Tyagi, J. Mater. Chem. 12, 1218–1221 (2002)

    Article  CAS  Google Scholar 

  33. T.V. Anuradha, S. Ranganathan, T. Mimani, K.C. Patil, Scr. Mater. 44, 2237–2241 (2001)

    Article  CAS  Google Scholar 

  34. L.J. Zhou, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, J. Eur. Ceram. Soc. 26, 1995–1998 (2006)

    Article  CAS  Google Scholar 

  35. Q.L. Zhang, F. Wu, H. Yang, J.F. Li, J. Alloys Compd. 508, 610–615 (2010)

    Article  CAS  Google Scholar 

  36. B.L. Liang, X.H. Zheng, D.P. Tang, J. Alloys Compd. 488, 409–413 (2009)

    Article  CAS  Google Scholar 

  37. S. Chandel, P. Thakur, S.S. Thakur, V. Kanwar, M. Tomar, A. Thakur, Ceram. Int. 44, 4711–4718 (2018)

    Article  CAS  Google Scholar 

  38. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State 45, 141–145 (2003)

    Article  CAS  Google Scholar 

  39. N.S. Gajbhiye, U. Bhattacharya, V.S. Darshane, Thermochim. Acta 264, 219–230 (1995)

    Article  CAS  Google Scholar 

  40. L.J. Bellamy, The Infrared Spectra of Complex Molecules, 2nd edn. (Springer, Dordrecht, 1958), p.299

    Google Scholar 

  41. M. Stefanescu, M. Stoia, C. Caizer, T. Dippong, P. Barvinschi, J. Therm. Anal. Calorim. 97, 245–250 (2009)

    Article  CAS  Google Scholar 

  42. J. Shao, Y. Tao, J. Wang, C. Xu, W.G. Wang, J. Alloys Compd. 484, 263–267 (2009)

    Article  CAS  Google Scholar 

  43. S.M. Khetre, J. Mater. Sci. Mater. Electron. 24, 1213–1219 (2013)

    Article  CAS  Google Scholar 

  44. S. Boumaza, R. Brahimi, L. Boudjellal, A. Belhadi, M. Trari, J. Solid State Electrochem. 24, 329–337 (2020)

    Article  CAS  Google Scholar 

  45. M. Stefanescu, T. Dippong, M. Stoia, O. Stefanescu, J. Therm. Anal. Calorim. 94, 389–393 (2008)

    Article  CAS  Google Scholar 

  46. X. Zhou, L.T. Liu, J.J. Sun, N.K. Zhang, H.Z. Sun, H.T. Wu, W.H. Tao, J. Adv. Ceram. 10, 778–789 (2021)

    Article  CAS  Google Scholar 

  47. J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, J. Adv. Ceram. 9, 558–566 (2020)

    Article  CAS  Google Scholar 

  48. C.L. Huang, S.H. Lin, Y.B. Chen, J. Alloys Compd. 489, 719–721 (2010)

    Article  CAS  Google Scholar 

  49. Y.B. Chen, J. Alloys Compd. 502, 153–157 (2010)

    Article  CAS  Google Scholar 

  50. Y.B. Chen, J. Alloys Compd. 491, 330–334 (2010)

    Article  CAS  Google Scholar 

  51. Z.H. Yao, H.X. Liu, Z.Y. Shen, Z.Z. Chen, Z.H. Wu, H.T. Yu, M.H. Cao, Mater. Res. Bull. 41, 1972–1978 (2006)

    Article  CAS  Google Scholar 

  52. Y.Y. Liu, M.S. Fu, H.J. Guo, X. Ma, L. Ni, Ceram. Int. 48, 23044–23050 (2022)

    Article  CAS  Google Scholar 

  53. H.C. Yang, S.R. Zhang, H.Y. Yang, Y. Yuan, E.Z. Li, J. Am. Ceram. Soc. 103, 1121–1130 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledged the National Undergraduate Innovation and Entrepreneurship Training Programme (202110360028) and the Natural Science Foundation of Anhui Provincial Education Department (KJ2019A0054).

Author information

Authors and Affiliations

Authors

Contributions

XL, DX, and JL contributed to the conception and design of study. The materials preparation and data collection were performed by XL, XS, and QJ. The analysis and interpretation of data were done by DX and JL. The first draft of the manuscript were completed by XL and XS. JL revised the manuscript critically for important intellectual content. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Jiamao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Our present work will provide instructive guidance for the study of A(B′1/2B″1/2)O3-based microwave dielectric ceramics.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., She, X., Jia, Q. et al. Structure, morphology, sintering behavior, and microwave dielectric properties of 6Ca0.61Nd0.26TiO3–4Nd(Zn1/2Ti1/2)O3 ceramics prepared via citrate precursor method. J Mater Sci: Mater Electron 33, 20532–20543 (2022). https://doi.org/10.1007/s10854-022-08867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08867-6

Navigation