Skip to main content

Advertisement

Log in

Synthesis, characterization and magnetic properties of Mg2+ doped green pigment Cobalt aluminate nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The green pigment cobalt aluminate nanoparticles have been prepared by the simple and cost-effective co-precipitation method. And also, the structural, optical and magnetic properties of cobalt aluminate nanoparticles are altered by \({\text{Mg}}^{2 + }\) ions. In this work, stoichiometric ratio for the synthesis process to be taken is \({\text{Co}}_{{1 - {\text{x}}}} {\text{Mg}}_{{\text{x}}} {\text{Al}}_{2} {\text{O}}_{4} { }\left( {{\text{x}} = 0.00,{\text{ x}} = 0.06} \right)\) for the preparation of nanoparticles. The XRD analysis revealed a single-phase mixed spinel ferrite, whereas a scanning electron microscopy (SEM) analysis revealed spherical particles with a size of 20 nm. Williamson–Hall (W–H) method was also used to determine the microstructural parameters of Mg2+-doped cobalt aluminate nanoparticles. Fourier Transform Infrared (FT-IR) spectrometer has been recorded in the wavenumber range of \(4000 - 400{\text{ cm}}^{ - 1}\) for the presence of various vibrational and stretching bands in the metal aluminates. A band gap energy value of \(2.25{\text{ eV}}\) and \(2.74{\text{ eV}}\) was estimated for undoped and doped \({\text{cobalt aluminate}}\) nanoparticles using Tauc plot through UV–visible study. The transmission electron microscopy (TEM) analysis showed the synthesized nanoparticles display a mixed spherical and cubical shaped nanoparticles with good crystallinity in nature. Important magnetic parameters of the metal aluminate nanoparticles are also noted using Vibrating Sample Magnetometer (VSM) which confirmed the ferromagnetic nature of the material and could be good candidates for microwave a biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data will be made available from the corresponding author on reasonable request.

References

  1. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  2. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  3. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  4. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11(19), 11500–11512 (2021). https://doi.org/10.1039/d0ra10288a

    Article  CAS  Google Scholar 

  5. W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J. Alloys Compd. 479(1–2), 480–483 (2009). https://doi.org/10.1016/j.jallcom.2008.12.111

    Article  CAS  Google Scholar 

  6. F. Bondioli, T. Manfredini, A.P.N. Oliveira, Pigmentos inorgânicos: projeto, produção e aplicação industrial. Ceram. Ind. 3(4–6), 13–17 (1998)

    CAS  Google Scholar 

  7. M. Llusar, A. Fore´ s, J.A. Badenes, J. Calbo, M.A. Tena, G. Monro´ s., Colour analysis of some cobalt-based blue pigments. J. Eur. Ceram. Soc. 21(8), 1121–1130 (2001). https://doi.org/10.1016/s0955-2219(00)00295-8

    Article  CAS  Google Scholar 

  8. S. R. Yousefi, O. Amiri, and M. Salavati-Niasari. 2019 Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason Sonochemis 58:104619. https://doi.org/10.1016/j.ultsonch.2019.104619

  9. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  10. V. Sepelak, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K.D. Becker, C.P. Grey, P. Heitjans, High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action. J. Mater. Chem. 21(23), 8332 (2011). https://doi.org/10.1039/c0jm03721d

    Article  CAS  Google Scholar 

  11. M. Lo Jacono, M. Schiavello, A. Cimino, Structural, magnetic, and optical properties of nickel oxide supported on eta- and gamma-aluminas. J. Phys. Chem. 75(8), 1044–1050 (1971). https://doi.org/10.1021/j100678a005

    Article  Google Scholar 

  12. J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, Z. Guo, Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption”. J. Mater. Sci. Technol. 108, 64–72 (2022). https://doi.org/10.1016/j.jmst.2021.08.049

    Article  Google Scholar 

  13. J. Guo, Z. Chen, Xu. Xiaojian, Hu. Xu Li, S.X. Liu, W. Abdul, Wu. Qing, P. Zhang, Ben Bin Xu, Jianfeng Zhu & Zhanhu Guo, Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater (2022). https://doi.org/10.1007/s42114-022-00417-2

    Article  Google Scholar 

  14. J. Guo, X. Li, H. Liu, D.P. Young, G. Song, K. Song, J. Zhu, J. Kong, Z. Guo, Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1), 51–64 (2021). https://doi.org/10.1007/s42114-021-00211-6

    Article  CAS  Google Scholar 

  15. J. Guo, Z. Chen, W. Abdul, J. Kong, M.A. Khan, D.P. Young, J. Zhu, Z. Guo, Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 4, 534–542 (2021). https://doi.org/10.1007/s42114-021-00242-z

    Article  CAS  Google Scholar 

  16. S. Akdemir, E. Ozel, E. Suvaci, Solubility of blue CoAl2O4 ceramic pigments in water and diethylene glycol media. Ceram. Int. 37(3), 863–870 (2011). https://doi.org/10.1016/j.ceramint.2010.10.031

    Article  CAS  Google Scholar 

  17. Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment. Mater. Lett. 55(5), 281–284 (2002). https://doi.org/10.1016/s0167-577x(02)00378-6

    Article  CAS  Google Scholar 

  18. Z.Z. Chen, E.W. Shi, W.J. Li, Y.Q. Zheng, J.Y. Zhuang, B. Xiao, L.A. Tang, Preparation of nanosized cobalt aluminate powders by a hydrothermal method. Mater. Sci. Eng., B 107(2), 217–223 (2004). https://doi.org/10.1016/j.mseb.2003.11.013

    Article  CAS  Google Scholar 

  19. W.S. Cho, M. Kakihana, Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor. J. Alloy. Compd. 287(1–2), 87–90 (1999). https://doi.org/10.1016/s0925-8388(99)00059-6

    Article  CAS  Google Scholar 

  20. J. Chandradass, M. Balasubramanian, K.H. Kim, Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse miscelle processing. J. Alloy. Compd. 506(1), 395–399 (2010). https://doi.org/10.1016/j.jallcom.2010.07.014

    Article  CAS  Google Scholar 

  21. C. Wang, S. Liu, L. Liu, X. Bai, Synthesis of cobalt–aluminate spinels via glycine chelated precursors. Mater. Chem. Phys. 96(2–3), 361–370 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.066

    Article  CAS  Google Scholar 

  22. N. Kiomarsipour, R.S. Razavi, Hydrothermal synthesis of ZnO nano pigments with high UV absorption and Vis/NIR reflectance. Ceram. Int. 40(7), 11261–11268 (2014). https://doi.org/10.1016/j.ceramint.2014.03.178

    Article  CAS  Google Scholar 

  23. G. Buvaneswari, V. Aswathy, R. Rajakumari, Comparison of colour and optical absorbance properties of divalent ion substituted Cu and Zn aluminate spinel oxides synthesized by combustion method towards pigment application. Dyes Pigment 123, 413–419 (2015). https://doi.org/10.1016/j.dyepig.2015.08.024

    Article  CAS  Google Scholar 

  24. A. Tirsoaga, D. Visinescu, B. Jurca, A. Ianculescu, O. Carp, Eco-friendly combustion based synthesis of metal aluminates MAl2O4 (M = Ni, Co). J. Nanopart. Res. 13(12), 6397–6408 (2011). https://doi.org/10.1007/s11051-011-0392-1

    Article  CAS  Google Scholar 

  25. S. Tamilarasan, D. Sarma, M.L.P. Reddy, S. Natarajan, J. Gopalakrishnan, YGa1− xMnxO3: A novel purple inorganic pigment. RSC Adv. 3(10), 3199–3202 (2013). https://doi.org/10.1039/c2ra22400c

    Article  CAS  Google Scholar 

  26. S. Jose, A. Prakash, S. Laha, S. Natarajan, M.L.P. Reddy, Green coloured nano pigments derived from Y2BaCuO5 NIR reflective coatings. Dyes Pigments 107, 118–126 (2014). https://doi.org/10.1016/j.dyepig.2014.03.025

    Article  CAS  Google Scholar 

  27. M. Llusar, A. Garcia, C. Gargori, R. Galindo, J.A. Badenes, G. Monros, Synthesis of diphosphate Mn2−xMgxP2O7 solid solutions with thortveitite structure: New pink ceramic dyes for the colouration of ceramic glazes. J. Eur. Ceram. Soc. 32(4), 765–776 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.051

    Article  CAS  Google Scholar 

  28. J. Chandradass, M. Balasubramanian, K.H. Kim, Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. J. Alloy. Compd. 506(1), 395–399 (2010). https://doi.org/10.1016/j.jallcom.2010.07.014

    Article  CAS  Google Scholar 

  29. J.-H. Kim, B.-R. Son, D.-H. Yoon, K.-T. Hwang, H.-G. Noh, W.-S. Cho, U.-S. Kim, “Characterization of blue CoAl2O4 nano-pigment synthesized by ultrasonic hydrothermal method. Ceram. Int. 38(7), 5707–5712 (2012). https://doi.org/10.1016/j.ceramint.2012.04.015

    Article  CAS  Google Scholar 

  30. S.M. Niasari, F.M. Khouzani, F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol-gel method. J. Sol-Gel. Sci. Technol. 52(3), 321–327 (2009). https://doi.org/10.1007/s10971-009-2050-y

    Article  CAS  Google Scholar 

  31. C. Ragupathi, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Combustion synthesis, structure, magnetic and optical properties of cobalt aluminate spinel nanocrystals. Ceram. Int. 40(8), 13067–13074 (2014). https://doi.org/10.1016/j.ceramint.2014.05.003

    Article  CAS  Google Scholar 

  32. N. Al-Zaqri, K. Umamakeshvari, V. Mohana, A. Muthuvel, A. Boshaala, Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J. Mater. Sci.: Mater. Electron. 33(15), 11864–11880 (2022). https://doi.org/10.1007/s10854-022-08149-1

    Article  CAS  Google Scholar 

  33. K. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K. Kanmani Raja, R. Thilak Kumar, Y. Slimani, S.K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019). https://doi.org/10.1016/j.jmmm.2019.01.108

    Article  CAS  Google Scholar 

  34. A. Khorsand Zak, W.H. Abd, M.E. Majid, Abrishami, and R. Yousefi., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  35. M.A. Tagliente, M. Massaro, Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res., Sect. B 266(7), 1055–1061 (2008). https://doi.org/10.1016/j.nimb.2008.02.036

    Article  CAS  Google Scholar 

  36. A. Muthuvel, N.M. Said, M. Jothibas, K. Gurushankar, V. Mohana, Microwave-assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties. J. Mater. Sci.: Mater. Electron. 32(18), 23522–23539 (2021). https://doi.org/10.1007/s10854-021-06840-3

    Article  CAS  Google Scholar 

  37. M. Jothibas, M. Sankar, A. Muthuvel, S. Srinivasan, M. Elayaraja, Enhanced sunlight irradiated photocatalytic activity of Sn doped CdS nanoparticles for the degradation of organic pollutants. Inorg. Chem. Commun. 136(2022), 109149 (2022). https://doi.org/10.1016/j.inoche.2021.109149

    Article  CAS  Google Scholar 

  38. M. Sundararajan, L. John Kennedy, P. Nithya, J. Judith Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chemi. Solids 108, 61–75 (2017). https://doi.org/10.1016/j.jpcs.2017.04.002

    Article  CAS  Google Scholar 

  39. W. Zheng, J. Zou, Synthesis and characterization of blue TiO2/CoAl2O4 complex pigments with good colour and enhanced near-infrared reflectance properties. RSC Adv. 5(107), 87932–87939 (2015). https://doi.org/10.1039/c5ra17418j

    Article  CAS  Google Scholar 

  40. H.E.H. Sadek, R.M. Khattab, A.A. Gaber, M.F. Zawrah, Nano Mg1−xNixAl2O4 spinel pigments for advanced applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 125, 353–358 (2014). https://doi.org/10.1016/j.saa.2014.01.115

    Article  CAS  Google Scholar 

  41. N. Bayal, P. Jeevanandam, Synthesis of metal aluminate nanoparticles by sol–gel method and studies on their reactivity. J. Alloy. Compd. 516, 27–32 (2012). https://doi.org/10.1016/j.jallcom.2011.11.080

    Article  CAS  Google Scholar 

  42. M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 329–334 (2014). https://doi.org/10.1016/j.saa.2014.04.040

    Article  CAS  Google Scholar 

  43. P.J. Jayanthi, I.K. Punithavathy, S.J. Jeyakumar, T. Elavazhagan, A. Muthuvel, M. Jothibas, Influence of temperature on the structural, optical, morphological and antibacterial properties of biosynthesized silver nanoparticles. Nanotechnol. Environ. Eng. (2022). https://doi.org/10.1007/s41204-022-00235-3

    Article  Google Scholar 

  44. E. V., A. R., and S. S., Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties. Chin. J. Chem. Eng. 27(10), 2596–2605 (2019). https://doi.org/10.1016/j.cjche.2019.01.008

    Article  CAS  Google Scholar 

  45. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S.K. Jaganathan, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Mag. Mag. Mat. 476, 157–165 (2019). https://doi.org/10.1016/j.jmmm.2018.09.089

    Article  CAS  Google Scholar 

  46. H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys. Compd. 650, 116–122 (2015). https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  CAS  Google Scholar 

  47. K. Elayakumar, V. Sathana, R.T. Kumar, Structural and Magnetic Characterization of Rare Earth Element Cerium-Doped Nickel Ferrite Nanoparticles (NiCexFe2-xO4) by Sol-Gel Method with Antibacterial Activity. J. Supercond. Novel Magn. 33(7), 2171–2178 (2020). https://doi.org/10.1007/s10948-020-05475-5

    Article  CAS  Google Scholar 

  48. M. Nabeel Rashin, J. Hemalatha, Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54(3), 834–840 (2014). https://doi.org/10.1016/j.ultras.2013.10.009

    Article  CAS  Google Scholar 

  49. A. Roniboss, A. Subramani, R. Ramamoorthy, S. Yuvaraj, M. Sundararajan, C.S. Dash, Investigation of structural, optical and magnetic behavior of MAl2O4 (M= Zn and Co) nanoparticles via microwave combustion technique. Mater. Sci. Semicond. Process. 123, 105507 (2021). https://doi.org/10.1016/j.mssp.2020.105507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2021/396), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this work contributed equally as a team, where all of them put their best effort to manage this work.

Corresponding author

Correspondence to A. Muthuvel.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, A., Muthuvel, A., Mohana, V. et al. Synthesis, characterization and magnetic properties of Mg2+ doped green pigment Cobalt aluminate nanoparticles. J Mater Sci: Mater Electron 33, 21246–21257 (2022). https://doi.org/10.1007/s10854-022-08834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08834-1

Navigation