Skip to main content
Log in

Synthesis, characterization, and gas-sensing performance of macroporous Zn-doped NiO thin films for ammonia gas detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc-doped nickel oxide (NiO:Zn) thin films have been synthesized by chemical spray pyrolysis (CSP), then we have studied the structural, morphological, and topographical properties. Thereafter, we have investigated the gas-sensing performance for the prepared films toward a low concentration of ammonia NH3 gas. The structural properties show that all films have a polycrystalline structure of cubic NiO along (111) direction, the crystallinity of thin films was improved by Zn-doping concentrations, and the crystallite size of thin films was decreased; on contrary, the lattice constant, unit cell volume, specific surface area, and Ni–O bond length were increased with increasing Zn-doping concentrations. The morphology of thin films has a macroporous nature with different pore diameters and nanoscopic surface roughness. The gas sensors based on NiO:Zn thin films exhibited a remarkable sensitivity and fast response as well as excellent long-term stability toward a low concentration of NH3 gas. Empirical equations were proposed to predict response/recovery time as a function of some correlated variables and revealed excellent coincidence with the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Behzadi Pour, L. Fekri Aval, Monitoring of hydrogen concentration using capacitive nanosensor in a 1% H2–N2 mixture. Micro Nano Lett. 13(2), 149–153 (2018)

    Article  CAS  Google Scholar 

  2. A.A. Najim, Synthesis and characterization of bismite nano-island thin films for optoelectronic applications. Mater. Sci. Semiconduct. Process. 121, 105334 (2021)

    Article  CAS  Google Scholar 

  3. A.J. Haider et al., Improving efficiency of TiO2: Ag/Si solar cell prepared by pulsed laser deposition. Plasmonics 12(1), 105–115 (2017)

    Article  CAS  Google Scholar 

  4. A.A. Najim et al., Experimental investigation to determine the optical properties of (Fe2O3)1-x(NiO)x thin films prepared by PLD technique for NLO applications. Opt. Mater. 121, 111602 (2021)

    Article  CAS  Google Scholar 

  5. K.R. Gbashi et al., Nanostructure characteristics of Bi2O3:Al2O3 thin films and the annealing temperature effect on morphological, optical, and mechanical properties. Superlattices Microstruct. 146, 106656 (2020)

    Article  CAS  Google Scholar 

  6. K.R. Gbashi et al., Structural, morphological, and optical properties of nanocrystalline (Bi2O3)1–x:(TiO2)x thin films for transparent electronics. Plasmonics 14(3), 623–630 (2019)

    Article  CAS  Google Scholar 

  7. A.T. Salih, A.A. Najim, A.D. Faisal, Influence of annealing temperature on the structural, morphological, optical and electrical properties of Cu7S4 thin films prepared by chemical bath deposition. J. Inorg. Organomet. Polym. Mater. 30(6), 2258–2265 (2020)

    Article  CAS  Google Scholar 

  8. M.A.H. Muhi et al., Novel covellite CuS single-crystal thin films for optoelectronic applications. Plasmonics 13, 247–250 (2018). https://doi.org/10.1007/s11468-017-0505-5

    Article  CAS  Google Scholar 

  9. A.A. Najim, K.R. Gbashi, A.T. Salih, Synthesis and characterization of nanocrystalline Ba-doped Mn3O4 hausmannite thin films for optoelectronic applications. Int. J. Nanosci. (2021). https://doi.org/10.1142/S0219581X2150040X

    Article  Google Scholar 

  10. F.M. Hassan, A.A. Najim, Synthesis and characterization of nanocrystalline Co-DOPED ZnO thin films prepared by chemical spray pyrolysis for optoelectronic applications. Surf. Rev. Lett. 28(12), 2150118 (2021). https://doi.org/10.1142/S0218625X21501183

    Article  CAS  Google Scholar 

  11. T. Najam et al., Nano-engineered directed growth of Mn3O4 quasi-nanocubes on N-doped polyhedrons: efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 45(23), 12903–12910 (2020)

    Article  CAS  Google Scholar 

  12. N. Cho, Gyu et al., Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B 155(1), 366–371 (2011)

    Article  CAS  Google Scholar 

  13. G. Pour, L.F. Behzadi, P. Esmaili. Aval, Performance of gas nanosensor in 1–4 per cent hydrogen concentration. Sens. Rev. 39, 622–628 (2019)

    Article  Google Scholar 

  14. Z. Li et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6(3), 470–506 (2019)

    Article  CAS  Google Scholar 

  15. A.A. Najim et al., Structural, topography, and optical properties of Ba-doped Mn3O4 thin films for ammonia gas sensing application. Phys. Status Solidi (a) 24, 215 (2018)

    Google Scholar 

  16. F.A. Sabah et al., High performance CuS p-type thin film as a hydrogen gas sensor. Sens. Actuators A 249, 68–76 (2016)

    Article  CAS  Google Scholar 

  17. J. Wang et al., Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J. Mater. Chem. 22, 20038–20047 (2012) 37 )

    Article  CAS  Google Scholar 

  18. H. Hakkoum et al., Effect of the source solution quantity on optical characteristics of ZnO and NiO thin films grown by spray pyrolysis for the design NiO/ZnO photodetectors. Opt. Mater. 108, 110434 (2020)

    Article  CAS  Google Scholar 

  19. C.C. Boyd et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4(8), 1759–1775 (2020)

    Article  CAS  Google Scholar 

  20. R. Ahmed, Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application. J. Energy Storage 33, 102115 (2021)

    Article  Google Scholar 

  21. E.M. Lee, Y. Ahn, J.Y. Son, Electric field control of magnetization reversal in conducting filament nanostructures in NiO resistive random access memory. J. Alloys Compd. 840, 155748 (2020)

    Article  CAS  Google Scholar 

  22. U. Sultan et al., A high-field anodic NiO nanosponge with tunable thickness for application in p-type dye-sensitized solar cells. ACS Appl. Energy Mater. 3(8), 7865–7872 (2020)

    Article  CAS  Google Scholar 

  23. N. Kitchamsetti et al., DFT and experimental investigations on the photocatalytic activities of NiO nanobelts for removal of organic pollutants. J. Alloys Compd. 855, 157337 (2021)

    Article  CAS  Google Scholar 

  24. H. Lin et al., The growth, properties and application of reactively sputtered nickel oxide thin films in all thin film electrochromic devices. Mater. Sci. Eng. B 270, 115196 (2021)

    Article  CAS  Google Scholar 

  25. M. Napari et al., Nickel oxide thin films grown by chemical deposition techniques: potential and challenges in next-generation rigid and flexible device applications. InfoMat 3(5), 536–576 (2021)

    Article  CAS  Google Scholar 

  26. U.T. Nakate et al., Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Appl. Surf. Sci. 506, 144971 (2020)

    Article  CAS  Google Scholar 

  27. M.M. Gomaa et al., Gas sensing performance of sprayed NiO thin films toward NO2 gas. J. Alloys Compd. 885, 160908 (2021)

    Article  CAS  Google Scholar 

  28. M.M. Gomaa et al., Exploring NiO nanosize structures for ammonia sensing. J. Mater. Sci.: Mater. Electron. 29(14), 11870–11877 (2018)

    CAS  Google Scholar 

  29. J. Lee et al., High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 9(2), 1159–1167 (2021)

    Article  CAS  Google Scholar 

  30. M. Jošt et al., 21.6%-efficient monolithic perovskite/Cu (In, Ga) Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4(2), 583–590 (2019)

    Article  CAS  Google Scholar 

  31. P.K. Salokhe et al., Study of physical properties of chemical bath deposited nickel oxide thin films. Mater. Today: Proc. 43, 2810–2813 (2021)

    CAS  Google Scholar 

  32. Z. Chen et al., Nickel oxide films by chemical spray: effect of deposition temperature and solvent type on structural, optical, and surface properties. Appl. Surf. Sci. 548, 149118 (2021)

    Article  CAS  Google Scholar 

  33. A.A. Ahmed, E.A. Alahsab, A.M. Abdulwahab, The influence of Zn and Mg doping on the structural and optical properties of NiO nano-structures for optoelectronic applications. Results Phys. 22, 103938 (2021)

    Article  Google Scholar 

  34. J. Cao, H. Zhang, X. Yan, Facile fabrication and enhanced formaldehyde gas sensing properties of nanoparticles-assembled chain-like NiO architectures. Mater. Lett. 185, 40–42 (2016)

  35. X. San et al., A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J. Alloys Compd. 739, 260–269 (2018)

    Article  CAS  Google Scholar 

  36. M. Stamataki et al., Hydrogen gas sensors based on PLD grown NiO thin film structures. Phys. Status Solidi (a) 205(8), 2064–2068 (2008)

    Article  CAS  Google Scholar 

  37. H. Steinebach et al., H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sens. Actuators B 151(1), 162–168 (2010)

    Article  CAS  Google Scholar 

  38. M. Shkir et al., An effect of Fe on physical properties of nanostructured NiO thin films for nonlinear optoelectronic applications. Appl. Phys. A 126(2), 1–14 (2020)

    Article  CAS  Google Scholar 

  39. R.S. Kate, R.J. Deokate, Effect of cobalt doping on electrochemical properties of sprayed nickel oxide thin films. Mater. Sci. Energy Technol. 3, 830–839 (2020)

    CAS  Google Scholar 

  40. N.M. Ahmed et al., The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 13, 102159 (2019)

    Article  Google Scholar 

  41. A.T. Salih et al., Study of structural phase transition in nanocrystalline cobalt oxide thin films by pulsed laser deposition. Mater. Res. Express 6(7), 076415 (2019)

    Article  CAS  Google Scholar 

  42. T. Munawar et al., Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46(2), 2421–2437 (2020)

    Article  CAS  Google Scholar 

  43. A.A. Abul-Magd, H.Y. Morshidy, A.M. Abdel-Ghany, The role of NiO on the structural and optical properties of sodium zinc borate glasses. Opt. Mater. 109, 110301 (2020)

    Article  CAS  Google Scholar 

  44. S. Yousaf et al., Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Int. 46(3), 3750–3758 (2020)

    Article  CAS  Google Scholar 

  45. R. Fomekong, Lontio et al., A sub-ppm level formaldehyde gas sensor based on Zn-doped NiO prepared by a co-precipitation route. J. Alloys Compd. 731, 1188–1196 (2018)

    Article  CAS  Google Scholar 

  46. N. Kitchamsetti et al., Perforated mesoporous NiO nanostructures for an enhanced pseudocapacitive performance with ultra-high rate capability and high energy density. CrystEngComm 21(46), 7130–7140 (2019)

    Article  CAS  Google Scholar 

  47. M. Aftab et al., Impact of copper doping in NiO thin films on their structure, morphology, and antibacterial activity against Escherichia coli. Ceram. Int. 46(4), 5037–5049 (2020)

    Article  CAS  Google Scholar 

  48. S. Visweswaran et al., Structural, morphological, optical and magnetic properties of sprayed NiO thin films by perfume atomizer. Appl. Phys. A 126(7), 1–12 (2020)

    Article  CAS  Google Scholar 

  49. C. Jian-Chao et al., Fractal analysis of surface roughness of particles in porous media. Chin. Phys. Lett. 27(2), 024705 (2010)

    Article  Google Scholar 

  50. A.P. Rambu et al., Study on Ni-doped ZnO films as gas sensors. Appl. Surf. Sci. 280, 598–604 (2013)

    Article  CAS  Google Scholar 

  51. P.-C. Chou et al., On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor. IEEE Sens. J. 15(7), 3711–3715 (2015)

    Article  Google Scholar 

  52. S. Capula-Colindres et al., Vapor-phase impregnation decomposition technique as an alternativeto decorate MWCNTs withPt and PdNPs for ammonia gas detection. Colloid Interface Sci. Commun. 44, 100490 (2021)

    Article  CAS  Google Scholar 

  53. J. Wang, X. Wei, P. Wangyang, Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for ammonia molecule detection. Nanoscale Res. Lett. 10(1), 1–9 (2015)

    Article  CAS  Google Scholar 

  54. H.-I. Chen et al., Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuators B 256, 962–967 (2018)

    Article  CAS  Google Scholar 

  55. H.T. Hien et al., High NH3 sensing performance of NiO/PPy hybrid nanostructures. Sens. Actuators B 340, 129986 (2021)

    Article  CAS  Google Scholar 

  56. Q. Hu et al., Design and preparation of hollow NiO sphere-polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuators B 344, 130179 (2021)

    Article  CAS  Google Scholar 

  57. K. Haunsbhavi et al., Pseudo n-type behaviour of nickel oxide thin film at room temperature towards ammonia sensing. Ceram. Int. 47(10), 13693–13703 (2021)

    Article  CAS  Google Scholar 

  58. M. Yin, Z. Zhu, Mesoporous NiO as an ultra-highly sensitive and selective gas sensor for sensing of trace ammonia at room temperature. J. Alloys Compd. 789, 941–947 (2019)

    Article  CAS  Google Scholar 

  59. Z. Zhao et al., NH3 sensor based on 3D hierarchical flower-shaped n-ZnO/p-NiO heterostructures yields outstanding sensing capabilities at ppb level. Sensors 20, 4754 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Nanotechnology and Advanced Materials Research Centre (NAMRC), University of Technology, Baghdad, Iraq.

Author information

Authors and Affiliations

Authors

Contributions

AAN contributed to conceptualization, methodology, data curation, investigation, project administration, software, supervision, validation, visualization, writing-original draft, and writing-review & editing. FMH contributed to formal analysis, funding acquisition, project administration, and writing-original draft. HSR contributed to funding acquisition, writing-original draft. HIA: funding acquisition, project administration, and writing-original draft.

Corresponding author

Correspondence to Aus A. Najim.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, H.S., Abdulgafour, H.I., Hassan, F.M. et al. Synthesis, characterization, and gas-sensing performance of macroporous Zn-doped NiO thin films for ammonia gas detection. J Mater Sci: Mater Electron 33, 18187–18198 (2022). https://doi.org/10.1007/s10854-022-08675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08675-y

Navigation