Skip to main content
Log in

Synchrotron crystal and local structures, microstructure, and electrical characterization of Cu-doped LiFePO4/C via dissolution method with ironstone as Fe source

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Powders of lithium iron phosphate (LFP) with Cu doping and carbon coating were prepared by a dissolution method using Fe sourced from natural ironstone. Two dopant amounts were used, 2 and 3 at.% while the carbon coating used carbonization with 9 wt.% citric acid. Synchrotron X-ray diffraction (XRD), Fe K-edge X-ray absorption spectroscopy (XAS), and scanning electron microscopy (SEM) were used to reveal the crystal and local structures and grain morphology of the formed phase. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and charge–discharge (CD) measurements were carried out to determine the electrical properties of the samples. According to the XRD and XAS data, LFP was the main phase in all samples with Fe coordination number 6 and an oxidation number of 2+. Small amounts of hematite were detected in the doped and carbonized samples. SEM images of the 2 and 3 at.% Cu-doped samples showed a spherical morphology with clear grain boundaries, whereas carbonization resulted in smaller grain sizes. XAS analysis showed that Cu doping increased the distance between Fe as the absorbing atom and its nearest-neighbor atoms, while carbon coating reduced it. The EIS and CD tests showed that Cu doping and carbonization increased the conductivity up to 10 times and the specific capacity up to 50 times for the undoped and uncarbonized samples. The CV curves showed that Cu doping and carbonization provided better intercalation, deintercalation, and reversibility properties of LFP as shown by the smallest potential difference at a value as low as 0.2 V. The changes in the electrical properties are explained in terms of the LFP structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Balali, S. Stegen, Renew. Sustain. Energy Rev. 135, 110185 (2021). https://doi.org/10.1016/j.rser.2020.110185

    Article  Google Scholar 

  2. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy 44, 24005 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  3. M.-J. Uddin, P.K. Alaboina, S.-J. Cho, Mater. Today Energy 5, 138 (2017). https://doi.org/10.1016/j.mtener.2017.06.008

    Article  Google Scholar 

  4. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  5. S.J. Rajoba, L.D. Jadhav, R.S. Kalubarme, S.N. Yadav, J. Alloy Compd. 774, 841 (2019). https://doi.org/10.1016/j.jallcom.2018.09.325

    Article  CAS  Google Scholar 

  6. M. Singh, B. Singh, M. Willert-Porada, J. Electroanal. Chem. 790, 11 (2017). https://doi.org/10.1016/j.jelechem.2017.02.043

    Article  CAS  Google Scholar 

  7. G. Du, Y. Xi, X. Tian, Y. Zhu, Y. Zhou, C. Deng, H. Zhu, A. Natarajan, Ceram. Int. 45, 18247 (2019). https://doi.org/10.1016/j.ceramint.2019.06.035

    Article  CAS  Google Scholar 

  8. L. Chen, W. Feng, Z. Pu, X. Wang, C. Song, Ionics (2019). https://doi.org/10.1007/s11581-019-03273-1

    Article  Google Scholar 

  9. J. Li, S. Li, Q. Li, Mater. Res. Innov. 19, S2 (2015). https://doi.org/10.1179/1432891715Z.0000000001324

    Article  CAS  Google Scholar 

  10. A. Sarmadi, S.M. Masoudpanah, S. Alamolhoda, J. Market. Res. 15, 5405 (2021). https://doi.org/10.1016/j.jmrt.2021.11.002

    Article  CAS  Google Scholar 

  11. X. Guan, G. Li, C. Li, R. Ren, Trans. Nonferrous Met. Soc. China 27, 141 (2017). https://doi.org/10.1016/S1003-6326(17)60016-5

    Article  CAS  Google Scholar 

  12. T.V.S.L. Satyavani, A. Srinivas Kumar, P.S.V. Subba Rao, Eng. Sci. Technol. 19, 178 (2016). https://doi.org/10.1016/j.jestch.2015.06.002

    Article  Google Scholar 

  13. X. Li, Z. Shao, K. Liu, Q. Zhao, G. Liu, B. Xu, J. Electroanal. Chem. 801, 368 (2017). https://doi.org/10.1016/j.jelechem.2017.08.020

    Article  CAS  Google Scholar 

  14. P.P. Prosini, M. Carewska, M. Pasquali, Solid State Ionics 286, 66 (2016). https://doi.org/10.1016/j.ssi.2015.11.031

    Article  CAS  Google Scholar 

  15. G. Hu, X. Xie, Y. Cao, L. Xu, K. Du, W. Wang, Z. Peng, J. Alloy Compd. 773, 1165 (2018). https://doi.org/10.1016/j.jallcom.2018.09.270

    Article  CAS  Google Scholar 

  16. C. Miao, P. Bai, Q. Jiang, S. Sun, X. Wang, J. Power Sources 246, 232 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.077

    Article  CAS  Google Scholar 

  17. N. Bai, H. Chen, W. Zhou, K. Xiang, Y. Zhang, C. Li, H. Lu, Electrochim. Acta 167, 172 (2015). https://doi.org/10.1016/j.electacta.2015.03.163

    Article  CAS  Google Scholar 

  18. C. Latif, A.F. Muyasaroh, A. Firdausi, D. Mardiana, W. Klysubun, C. Saiyasombat, B. Prihandoko, M. Zainuri, S. Pratapa, Ceram. Int. 47, 31877 (2021). https://doi.org/10.1016/j.ceramint.2021.08.073

    Article  CAS  Google Scholar 

  19. A.F. Muyasaroh, C. Latif, S. Lapboonruang, A. Firdausi, D. Mardiana, S. Pratapa, I.O.P. Conf, Ser. Mater. Sci. Eng. 515, 012009 (2019). https://doi.org/10.1088/1757-899X/515/1/012009

    Article  CAS  Google Scholar 

  20. A. Firdausi, C. Latif, Nihlatunnur, B. Prihandoko, M. Zainuri, S. Pratapa, AIP Conf. Proc. 2256, 030005 (2020). https://doi.org/10.1063/5.0015421

  21. Z. Zeng, Y. Dong, S. Yuan, W. Zhao, L. Wang, S. Liu, Y. Yang, P. Ge, W. Sun, X. Ji, Energy Storage Mater. 45, 442 (2022). https://doi.org/10.1016/j.ensm.2021.11.051

    Article  Google Scholar 

  22. S. Pratapa, E. A.D. Kiswanti, D. R. Diana, Y. Hariyani, L. D.K. Sari, M. Musyarofah, T. Triwikantoro, and M. A. Baqiya, in Ceramic Materials - Synthesis, Characterization, Applications and Recycling, edited by D. Eliche Quesada, L. Perez Villarejo, and P. Sánchez Soto (IntechOpen, 2019) https://doi.org/10.5772/intechopen.81983

  23. P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148, 45 (2002). https://doi.org/10.1016/S0167-2738(02)00134-0

    Article  CAS  Google Scholar 

  24. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152, A913 (2005). https://doi.org/10.1149/1.1884787

    Article  CAS  Google Scholar 

  25. H. Yue, D. Wang, L. Li, J. Alloy Compd. 711, 617 (2017). https://doi.org/10.1016/j.jallcom.2017.04.046

    Article  CAS  Google Scholar 

  26. H.-C. Liu, Y.-M. Wang, C.-C. Hsieh, Ceram. Int. 43, 3196 (2017). https://doi.org/10.1016/j.ceramint.2016.11.144

    Article  CAS  Google Scholar 

  27. H. Yuan, X. Wang, Q. Wu, H. Shu, X. Yang, J. Alloy. Compd. 675, 187 (2016). https://doi.org/10.1016/j.jallcom.2016.03.065

    Article  CAS  Google Scholar 

  28. A. Naik, J. Zhou, C. Gao, G. Liu, L. Wang, J. Energy Inst. 89, 21 (2016). https://doi.org/10.1016/j.joei.2015.01.013

    Article  CAS  Google Scholar 

  29. H. Göktepe, H. Şahan, Ş Patat, Int. J. Hydrogen Energy 41, 9774 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.074

    Article  CAS  Google Scholar 

  30. M. Zhu, L. Cheng, Y. Liu, W. Li, P. Hu, H. Jin, Y. Hu, Y. Li, Ceram. Int. 44, 12106 (2018). https://doi.org/10.1016/j.ceramint.2018.03.231

    Article  CAS  Google Scholar 

  31. Y. Li, J. Wang, H. Huang, J. Wang, M. Zhang, M. Liang, Adv. Powder Technol. (2019). https://doi.org/10.1016/j.apt.2019.04.017

    Article  Google Scholar 

  32. L. Noerochim, A.O. Yurwendra, D. Susanti, Ionics 22, 341 (2016). https://doi.org/10.1007/s11581-015-1560-6

    Article  CAS  Google Scholar 

  33. A. Eftekhari, J. Power Sources 343, 395 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.080

    Article  CAS  Google Scholar 

  34. S.-A. Hong, S.J. Kim, K.Y. Chung, Y.-W. Lee, J. Kim, B.-I. Sang, Chem. Eng. J. 229, 313 (2013). https://doi.org/10.1016/j.cej.2013.05.094

    Article  CAS  Google Scholar 

  35. M.A.M.M. Alsamet, E. Burgaz, Electrochim. Acta 367, 137530 (2021). https://doi.org/10.1016/j.electacta.2020.137530

    Article  CAS  Google Scholar 

  36. Y. Gao, K. Chen, H. Chen, X. Hu, Z. Deng, Z. Wei, J. Energy Chem. 26, 564 (2017). https://doi.org/10.1016/j.jechem.2016.10.016

    Article  Google Scholar 

  37. J. Wang, X. Sun, Energy Environ. Sci. 5, 5163 (2012). https://doi.org/10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  38. H. Husain, M. Sulthonul, B. Hariyanto, Y. Taryana, W. Klyusubun, S. Wannapaiboon, D. Darminto, S. Pratapa, J. Mater. Sci.: Mater. Electron. 31, 12398 (2020). https://doi.org/10.1007/s10854-020-03786-w

    Article  CAS  Google Scholar 

  39. A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi, J Synchrotron Rad 17, 653 (2010). https://doi.org/10.1107/S0909049510026051

    Article  CAS  Google Scholar 

  40. L. Tabassam, G. Giuli, A. Moretti, F. Nobili, R. Marassi, M. Minicucci, R. Gunnella, L. Olivi, A. Di Cicco, J. Power Sources 213, 287 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.036

    Article  CAS  Google Scholar 

  41. T. Zhao, W. Chu, H. Zhao, X. Liang, W. Xu, M. Yu, D. Xia, Z. Wu, Nucl. Instrum. Methods Phys. Res. Sect. A 619, 122 (2010). https://doi.org/10.1016/j.nima.2010.01.066

    Article  CAS  Google Scholar 

  42. J. Ren, L. Malfatti, and P. Innocenzi, C 7, 2 (2021) https://doi.org/10.3390/c7010002

  43. W. Klysubun, P. Sombunchoo, W. Deenan, C. Kongmark, J. Synchrotron. Rad. 19, 930 (2012). https://doi.org/10.1107/S0909049512040381

    Article  CAS  Google Scholar 

  44. B. Ravel, M. Newville, J. Synchrotron. Radiat. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  45. V.A. Streltsov, E.L. Belokoneva, V.G. Tsirelson, N.K. Hansen, Acta Cryst. B 49, 147 (1993). https://doi.org/10.1107/S0108768192004701

    Article  Google Scholar 

  46. E.N. Maslen, V.A. Streltsov, N.R. Streltsova, N. Ishizawa, Acta Cryst. B 50, 435 (1994). https://doi.org/10.1107/S0108768194002284

    Article  Google Scholar 

  47. B.A. Hunter, 2nd AINSE Symposium on Neutron Scattering Powder Diffraction and Australian Neutron Beam Users Group Meeting. Symposium Handbook 24 (2000)

  48. L. Lutterotti, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010). https://doi.org/10.1016/j.nimb.2009.09.053

    Article  CAS  Google Scholar 

  49. C.H. Yoder, Ionic Compounds (Wiley, Hoboken, 2006). https://doi.org/10.1002/0470075104

    Book  Google Scholar 

  50. R. Yang, X. Song, M. Zhao, F. Wang, J. Alloy. Compd. 468, 365 (2009). https://doi.org/10.1016/j.jallcom.2008.01.072

    Article  CAS  Google Scholar 

  51. B. Pei, Q. Wang, W. Zhang, Z. Yang, M. Chen, Electrochim. Acta 56, 5667 (2011). https://doi.org/10.1016/j.electacta.2011.04.024

    Article  CAS  Google Scholar 

  52. F. Gao, Z. Tang, J. Xue, Electrochim. Acta 53, 1939 (2007). https://doi.org/10.1016/j.electacta.2007.08.048

    Article  CAS  Google Scholar 

  53. G. Xie, H.-J. Zhu, X.-M. Liu, H. Yang, J. Alloy Compd. 574, 155 (2013). https://doi.org/10.1016/j.jallcom.2013.03.281

    Article  CAS  Google Scholar 

  54. N. Bunnag, B. Kasri, W. Setwong, E. Sirisurawong, M. Chotsawat, P. Chirawatkul, C. Saiyasombat, Radiat. Phys. Chem. 177, 109107 (2020). https://doi.org/10.1016/j.radphyschem.2020.109107

    Article  CAS  Google Scholar 

  55. M. Wilke, F. Farges, P.-E. Petit, G.E. Brown, F. Martin, Am. Miner. 86, 714 (2001). https://doi.org/10.2138/am-2001-5-612

    Article  CAS  Google Scholar 

  56. A. Vaitkus, A. Merkys, S. Gražulis, J. Appl. Cryst. 54, 661 (2021). https://doi.org/10.1107/S1600576720016532

    Article  CAS  Google Scholar 

  57. H. Husain, M. Sulthonul, B. Hariyanto, C. Cholsuk, S. Pratapa, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.11.530

    Article  Google Scholar 

  58. J.F. Ni, H.H. Zhou, J.T. Chen, X.X. Zhang, Mater. Lett. 59, 2361 (2005). https://doi.org/10.1016/j.matlet.2005.02.080

    Article  CAS  Google Scholar 

  59. R. Muruganantham, M. Sivakumar, R. Subadevi, W.-R. Liu, World J. Appl. Chem. 2, 7 (2017). https://doi.org/10.11648/j.wjac.20170201.12

    Article  Google Scholar 

  60. N. Zhao, Y. Li, X. Zhi, L. Wang, X. Zhao, Y. Wang, G. Liang, J. Rare Earths 34, 174 (2016). https://doi.org/10.1016/S1002-0721(16)60011-X

    Article  CAS  Google Scholar 

  61. W. D. Callister Jr., Materials Science and Engineering: An Introduction, 7th Edn (2006)

  62. E. Suarso, F.A. Setyawan, A. Subhan, M.M. Ramli, N.S. Ismail, M. Zainuri, Z. Arifin, Darminto, J Mater Sci: Mater Electron 32, 28297 (2021) https://doi.org/10.1007/s10854-021-07206-5

  63. M. de Pauli, A.M.C. Gomes, R.L. Cavalcante, R.B. Serpa, C.P.S. Reis, F.T. Reis, M.L. Sartorelli, Electrochim. Acta 320, 134366 (2019). https://doi.org/10.1016/j.electacta.2019.06.059

    Article  CAS  Google Scholar 

  64. C. Yan, K. Wu, P. Jing, H. Luo, Y. Zhang, Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.125711

    Article  Google Scholar 

  65. Y.-W. Chen, J.-S. Chen, Int. J. Electrochem. Sci. 7, 8128 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Culture, Research and Technology (KEMDIKBUDRISTEK) and the ITS Research and Community Service Institute (DRPM) who have funded this research in the PMDSU program No. 820/PKS/ITS/2018 which was given to CL under the supervision of SP. We would also thank the SLRI Thailand and its staff at BL 1.1W and BL 8 for providing XRD and XAS facilities through Beam Time Project Numbers 6447 and 2618. We also thank the late Dr. Bambang Prihandoko from the Research Center for Physics—National Research and Innovation Agency, who provided supervision in the manufacture of coin cell batteries and testing their electrical properties.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: CL, MZ, SP; formal analysis: CL, CS, SP; investigation: CL, AF, NN, CS, WK, AS, SP; writing—original draft: CL; resources: CL, AF, NN, CS, WK, AS; data curation: CL, AF, NN: writing—review and editing: CS, SP; supervision: MZ, SP; funding acquisition: CL, SP; project administration: SP.

Corresponding author

Correspondence to Suminar Pratapa.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, C., Firdausi, A., Nihlatunnur, N. et al. Synchrotron crystal and local structures, microstructure, and electrical characterization of Cu-doped LiFePO4/C via dissolution method with ironstone as Fe source. J Mater Sci: Mater Electron 33, 17722–17732 (2022). https://doi.org/10.1007/s10854-022-08635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08635-6

Navigation