Skip to main content
Log in

Electrodeposition of nanostructured cuprous oxide on various substrates and their electrochemical and photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured Cu2O films have been developed on various conductive substrates (FTO, ITO, and Mo) by a low-cost electrodeposition process and used as catalysts for the electrochemical and photoelectrochemical of Rhodamine B (RhB). The effect of the conductive substrate on the crystalline structure, surface morphology, and photoelectrochemical properties of synthesized Cu2O layers was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis transmittance, and photocurrent spectroscopy. XRD confirmed that on all three substrates, a single-phase is formed, crystallizing in a cubic structure with a (111) plane orientation, demonstrating good crystal quality. SEM images indicated that the deposits were homogeneous, dense, and uniform with a morphology grain with three and four facets pyramid-shaped. Smaller grain sizes and the largest surface area on the molybdenum substrate were observed. The optical band gap of Cu2O elaborated is between 2.26 and 2.20 eV. The films exhibit p-type characteristics with carrier densities ranging from 2 × 1018 to 3.76 × 1020 cm−3. The Cu2O/Mo showed the highest performance in terms of RhB dye degradation among the other catalysts and the photoelectrochemical degradation of the same dye was faster while combining UV light with current density. Therefore, the results designate that the choice of substrate for deposited Cu2O films is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets that are generated and analyzed in the present research are available from the corresponding author.

References

  1. E. Kusmierek, Catalysts 10, 1435 (2020)

    Article  CAS  Google Scholar 

  2. E. Amaterz, A. Tara, A. Bouddouch, A. Taoufyq, B. Bakiz, A. Benlhachemi, O. Jbara, Rev. Environ. Sci. Biotechnol. 19, 843 (2020)

    Article  CAS  Google Scholar 

  3. A.A. hssi, L. Atourki, N. Labchir, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, S. Benmokhtar, K. Bouabid, J. Mater. Sci. Mater. Electron. 22, 89 (2020)

    Google Scholar 

  4. M. Hara, Chem. Commun. (1998). https://doi.org/10.1039/A707440I

    Article  Google Scholar 

  5. D.C. Perng, M.H. Hong, K.H. Chen, K.H. Chen, J. Alloys Compd. 695, 549 (2017)

    Article  CAS  Google Scholar 

  6. Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C 113, 14448 (2009)

    Article  CAS  Google Scholar 

  7. P. Liu, X. Zhang, L. Yao, C. Han, Micro Nano Lett. 18, 3885 (2018)

    Article  CAS  Google Scholar 

  8. L. Xu, H. Xu, S. Wu, X. Zhang, Appl. Surf. Sci. 258, 4934 (2012)

    Article  CAS  Google Scholar 

  9. S. Chen, L. Lin, J. Liu, P. Lv, X. Wu, W. Zheng, Y. Qu, F. Lai, J. Alloys Compd. 644, 378 (2015)

    Article  CAS  Google Scholar 

  10. T. Yang, Y. Ding, C. Li, N. Yin, X. Liu, P. Li, J. Alloys Compd. 727, 14 (2017)

    Article  CAS  Google Scholar 

  11. M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, E. Fortunato, Sol. Energy Mater. Sol. Cells 147, 27 (2015)

    Google Scholar 

  12. Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2019)

    Article  CAS  Google Scholar 

  13. X. Wan, J. Wang, L. Zhu, J. Tang, J. Mater. Chem. A 2, 13641 (2014)

    Article  CAS  Google Scholar 

  14. Q. Guo, Y. Li, W. Zeng, Phys. E Low-Dimens. Syst. Nanostruct. 114, 113564 (2019)

    Article  CAS  Google Scholar 

  15. R. Kumar, P. Rai, A. Sharma, RSC Adv. 6, 3815 (2016)

    Article  CAS  Google Scholar 

  16. H. Yu, J. Yu, S. Liu, S. Mann, Chem. Mater. 19, 4327 (2007)

    Article  CAS  Google Scholar 

  17. Y.F. Lim, C.S. Chua, C.J.J. Lee, D. Chi, Phys. Chem. Chem. Phys. 16, 25928 (2014)

    Article  CAS  Google Scholar 

  18. B.S. Li, K. Akimoto, A. Shen, J. Cryst. Growth 311, 1102 (2009)

    Article  CAS  Google Scholar 

  19. Y.S. Lee, J. Heo, M.T. Winkler, S.C. Siah, S.B. Kim, R.G. Gordon, T. Buonassisi, J. Mater. Chem. A 1, 15416 (2013)

    Article  CAS  Google Scholar 

  20. S. Choudhary, J. V. N. Sarma, S. Gangopadhyay, in AIP Conf. Proc. (2016).

  21. T. Ksuyoshi, S. Kaneko, J. Am. Ceram. Soc. (1998).

  22. A.A. hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar, K. Bouabid, Mater. Today Proc. 22, 89 (2020)

    Article  CAS  Google Scholar 

  23. K.E.R. Brown, K.S. Choi, Chem. Commun. 31, 3311 (2006)

    Article  CAS  Google Scholar 

  24. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454 (2016)

    Article  CAS  Google Scholar 

  25. A.A. hssi, L. Atourki, N. Labchir, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, Mater. Res. Express 7, 16424 (2020)

    Article  CAS  Google Scholar 

  26. N. Labchir, A. Hannour, A.A. hssi, D. Vincent, K. Abouabassi, A. Ihlal, M. Sajieddine, Mater. Sci. Semicond. Process. 111, 104992 (2020)

    Article  CAS  Google Scholar 

  27. L. Atourki, E.H. Ihalane, H. Kirou, K. Bouabid, A. Elfanaoui, L. Laanab, X. Portier, A. Ihlal, Sol. Energy Mater. Sol. Cells 22, 89 (2016)

    Google Scholar 

  28. A.A. hssi, L. Atourki, N. Labchir, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, Solid State Sci. 7, 0164s24 (2020)

    Google Scholar 

  29. W. Wu, K. Feng, B. Shan, N. Zhang, Electrochim. Acta 176, 59 (2015)

    Article  CAS  Google Scholar 

  30. D. Mohra, M. Benhaliliba, M. Serin, M.R. Khelladi, H. Lahmar, A. Azizi, J. Semicond. 37, 103001 (2016)

    Article  CAS  Google Scholar 

  31. M. Benhaliliba, D. Mohra, M. Serin, Adv. Sci. Eng. Med. 11, 519 (2019)

    Article  CAS  Google Scholar 

  32. P.K. Pagare, A.P. Torane, J. Mater. Sci. Mater. Electron. 28, 1386 (2017)

    Article  CAS  Google Scholar 

  33. Y.L. Liu, Y.C. Liu, R. Mu, H. Yang, C.L. Shao, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Semicond. Sci. Technol. 20, 44 (2005)

    Article  CAS  Google Scholar 

  34. W. Ismail, N.M. El-Shafai, A. El-Shaer, M. Abdelfatah, Mater. Sci. Semicond. Process. 120, 105335 (2020)

    Article  CAS  Google Scholar 

  35. S. Shyamal, P. Hajra, H. Mandal, J.K. Singh, A.K. Satpati, S. Pande, C. Bhattacharya, ACS Appl. Mater. Interfaces 7, 18344 (2015)

    Article  CAS  Google Scholar 

  36. A. Soussi, A.A. Hssi, M. Boujnah, L. Boulkadat, K. Abouabassi, A. Asbayou, A. Elfanaoui, R. Markazi, A. Ihlal, K. Bouabid, J. Electron. Mater. 50, 4497 (2021)

    Article  CAS  Google Scholar 

  37. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chen, G. Zou, CrystEngComm 13, 2871 (2011)

    Article  CAS  Google Scholar 

  38. S. Bugarinovic, V. Grekulovic, M. Rajcic-Vujasinovic, Z. Stevic, Z. Stankovic, Hem. Ind. Ind. 63, 201 (2009)

    Article  CAS  Google Scholar 

  39. A. A. Hssi, L. Atourki, K. Abouabassi, A. Elfanaoui, K. Bouabid, A. Ihlal, S. Benmokhtar, M. Ouafi, in AIP Conference Proceedings (2018).

  40. A. El-Shaer, W. Ismail, M. Abdelfatah, Mater. Res. Bull. 116, 111 (2019)

    Article  CAS  Google Scholar 

  41. B. Altiokka, M.C. Baykul, M.R. Altiokka, J. Cryst. Growth 384, 50 (2013)

    Article  CAS  Google Scholar 

  42. A. A. Hssi, E. Amaterz, N. labchir, L. Atourki, I. Y. Bouderbala, A. Elfanaoui, A. Benlhachemi, A. Ihlal, K. Bouabid, Phys. Status Solidi Appl. Mater. Sci. (2020).

  43. A. Osherov, C. Zhu, M.J. Panzer, J. Phys. Chem. C 111, 771 (2013)

    Google Scholar 

  44. A. El-Shaer, A.R. Abdelwahed, ISRN Nanotechnol. 2013, 1 (2013)

    Article  CAS  Google Scholar 

  45. K.P. Ganesan, N. Anandhan, T. Marimuthu, R. Panneerselvam, A.A. Roselin, Acta Metall. Sin. (English Lett.) 32, 1065 (2019)

    Article  CAS  Google Scholar 

  46. K. Abouabassi, M. Ouafi, A. A. Hssi, L. Atourki, H. Kirou, N. Labchir, L. Boulkaddat, E. Gilioli, A. Elfanaoui, K. Bouabid, in 2019 7th International Renewable and Sustainable Energy Conference (IEEE, 2019), pp. 1–4.

  47. N. Labchir, A. Hannour, D. Vincent, A.A. Hssi, M. Ouafi, K. Abouabassi, A. Ihlal, M. Sajieddine, J. Electron. Mater. 111, 104992 (2020)

    CAS  Google Scholar 

  48. S.S. Sawant, A.D. Bhagwat, C.M. Mahajan, J. Nano- Electron. Phys. 8, 01036 (2016)

    Google Scholar 

  49. O. Messaoudi, H. Makhlouf, A. Souissi, I. Ben Assaker, M. Karyaoui, A. Bardaoui, M. Oueslati, R. Chtourou, J. Alloys Compd. 611, 142 (2014)

    Article  CAS  Google Scholar 

  50. S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev. 44, 2893 (2015)

    Article  CAS  Google Scholar 

  51. A.S. Elmezayyen, S. Guan, F.M. Reicha, I.M. El-Sherbiny, J. Zheng, C. Xu, J. Phys. D. Appl. Phys. 48, 175502 (2015)

    Article  CAS  Google Scholar 

  52. S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013)

    Article  CAS  Google Scholar 

  53. E. Amaterz, A. Bouddouch, A. Tara, A. Taoufyq, Z. Anfar, B. Bakiz, L. Bazzi, A. Benlhachemi, O. Jbara, Electrocatalysis 11, 642 (2020)

    Article  CAS  Google Scholar 

  54. B.O. Orimolade, B.N. Zwane, B.A. Koiki, L. Tshwenya, G.M. Peleyeju, N. Mabuba, M. Zhou, O.A. Arotiba, J. Environ. Chem. Eng. 8, 103607 (2020)

    Article  CAS  Google Scholar 

  55. A. Chennah, E. Amaterz, A. Taoufyq, B. Bakiz, Y. Kadmi, L. Bazzi, F. Guinneton, J.R. Gavarri, A. Benlhachemi, Process Saf. Environ. Prot. 148, 209 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially funded by The Moroccan Ministry of Higher Education and Research in the framework of the CNRST (Morocco)/CNR (Italy) cooperation program: “Towards very low cost deposition of Chalcopyrite and Kesterite-based thin film solar cells: CIGS (Cu(In, Ga)Se2) and CZTS (Cu2ZnSn(S, Se)4)”.

Funding

I declare that the funding for this work was provided by my laboratory team at Ibn Zohr University in Morocco. This funding has allowed us to carry out all the studies presented in our paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AAh. Data curation: AAh, EA; Formal analysis: AAh, EA, NL; Methodology: AAh, AS, EA, NL, AE. Validation: AAh, AS, EA, AB, AI, KB. Visualization: AAh, EA, AB, AI, KB. Writing—original draft: AAh, AS, EA, AE. Writing—review & editing: AAh, AS, EA, AB, AI, KB.

Corresponding author

Correspondence to Abderrahim Ait hssi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait hssi, A., Amaterz, E., labchir, N. et al. Electrodeposition of nanostructured cuprous oxide on various substrates and their electrochemical and photoelectrochemical properties. J Mater Sci: Mater Electron 33, 15791–15801 (2022). https://doi.org/10.1007/s10854-022-08481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08481-6

Navigation