Skip to main content

Advertisement

Log in

Enhanced large field-induced strain and energy storage properties of Sr0.6La0.2Ba0.1TiO3-modified Bi0.5Na0.5TiO3 relaxor ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric materials especially relaxor ferroelectrics with giant strain and super-high energy density have received substantial attentions. Bi0.5Na0.5TiO3 (BNT)-based ceramics as one of the typical relaxor ferroelectric materials have been extensively explored for their distinctive performance. Here, lead-free (1−x)Na0.5Bi0.5TiO3xSr0.6La0.2Ba0.1TiO3 (BNT–SLBT) ceramics were designed and prepared by the solid-state reaction method. A large strain response of 0.470% and huge piezoelectric strain coefficient of 600 pm/V were achieved in BNT–0.15SLBT relaxor, which were attributed to the relaxor-ferroelectric phase transition under stimulated electric field. The εrT curve shows that with the increase of x content, the phase transition temperature moves to room temperature, which improves the energy storage performance. A super-high recoverable energy density Wrec of 3.18 J/cm3 and η of 82.8% under 250 kV/cm can be achieved in BNT–0.25SLBT ergodic relaxor. Moreover, the chargedischarge properties characterized by a high pulse discharge energy density (0.816 J/cm3), a rapid discharge duration (3 μs) and a power density (2.86 MW/cm3) are also observed in BNT–0.25SLBT ceramic. We provide a method for enhanced BNT-based ceramics with strain and energy storage in drive device or capacitor, facilitating the exploration of ceramic in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. W. Bai, X. Zhao, Y. Ding, L. Wang, P. Zheng, J. Hao, J. Zhai, Adv. Electron. Mater. 6, 2000332 (2020)

    Article  CAS  Google Scholar 

  2. F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai, Nano Energy 75, 105012 (2020)

    Article  CAS  Google Scholar 

  3. X. Wang, X. Liu, H. Xue, J. Yin, J. Wu, J. Am. Ceram. Soc. 105, 2116–2127 (2022)

    Article  CAS  Google Scholar 

  4. X. Zhou, G. Xue, H. Luo, X. Yuan, D. Zhang, J. Eur. Ceram. Soc. 42, 1425–1433 (2022)

    Article  CAS  Google Scholar 

  5. F. Li, J. Zhai, B. Shen, X. Liu, K. Yang, Y. Zhang, P. Li, B. Liu, H. Zeng, J. Appl. Phys. 121, 54103 (2017)

    Article  CAS  Google Scholar 

  6. W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, W.L. Li, J. Eur. Ceram. Soc. 39, 4046–4052 (2019)

    Article  CAS  Google Scholar 

  7. L. Chen, N. Sun, Y. Li, Q. Zhang, L. Zhang, X. Hao, J. Am. Ceram. Soc. 101, 2313–2320 (2018)

    Article  CAS  Google Scholar 

  8. W. Bai, L. Wang, X. Zhao, P. Zheng, F. Wen, L. Li, J. Zhai, Z. Ji, Dalton Trans. 48, 10160–10173 (2019)

    Article  CAS  Google Scholar 

  9. R.A. Malik, A. Hussain, J.U. Rahman, A. Maqbool, T. Song, W. Kim, S. Ryou, M. Kim, Mater. Lett. 143, 148–150 (2015)

    Article  CAS  Google Scholar 

  10. X. Liu, J. Han, Y. Huang, J. Yin, J. Wu, J. Am. Ceram. Soc. 104, 1391–1401 (2021)

    Article  CAS  Google Scholar 

  11. D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu, J. Liu, J. Mater. Chem. C Mater. Opt. Electron. Devices 8, 561–591 (2020)

    Article  Google Scholar 

  12. Y. Zhang, J. Yin, C. Zhao, B. Wu, J. Wu, J. Am. Ceram. Soc. 101, 3005–3014 (2018)

    Article  CAS  Google Scholar 

  13. Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, J. Alloys Compd. 775, 116–123 (2019)

    Article  CAS  Google Scholar 

  14. F. Li, Y. Liu, Y. Lyu, Y. Qi, Z. Yu, C. Lu, Ceram. Int. 43, 106–110 (2017)

    Article  CAS  Google Scholar 

  15. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Chem. Eng. J. 388, 124158 (2020)

    Article  CAS  Google Scholar 

  16. Z. Shen, Y. Wang, Y. Tang, Y. Yu, W. Luo, X. Wang, Y. Li, Z. Wang, F. Song, J. Materiomics 5, 641–648 (2019)

    Article  Google Scholar 

  17. D. Li, Z. Shen, Z. Li, X. Wang, W. Luo, F. Song, Z. Wang, Y. Li, J. Mater. Sci.: Mater. Electron. 30, 5917–5922 (2019)

    CAS  Google Scholar 

  18. L. Dongxu, S. Zong-Yang, L. Zhipeng, L. Wenqin, W. Xingcai, W. Zhumei, S. Fusheng, L. Yueming, J. Adv. Ceram. 9, 183–192 (2020)

    Article  CAS  Google Scholar 

  19. B. Chu, J. Hao, P. Li, Y. Li, W. Li, L. Zheng, H. Zeng, ACS Appl. Mater. Interfaces 14, 19683–19696 (2022)

    Article  CAS  Google Scholar 

  20. F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, J. Zhai, Energy Storage Mater. 30, 392–400 (2020)

    Article  Google Scholar 

  21. J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi, A.C.S. Appl, Electron. Mater. 4, 735–743 (2022)

    CAS  Google Scholar 

  22. G. Liu, J. Dong, L. Zhang, Y. Yan, R. Jing, L. Jin, J. Materiomics 6, 677–691 (2020)

    Article  Google Scholar 

  23. J. Wu, H. Zhang, C. Huang, C. Tseng, N. Meng, V. Koval, Y. Chou, Z. Zhang, H. Yan, Nano Energy 76, 105037 (2020)

    Article  CAS  Google Scholar 

  24. J. Chen, Y. Wang, L. Wu, Q. Hu, Y. Yang, J. Alloys Compd. 775, 865–871 (2019)

    Article  CAS  Google Scholar 

  25. G. Viola, R. Mkinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, J. Phys. Chem. C 118, 8564–8570 (2014)

    Article  CAS  Google Scholar 

  26. X. Liu, X. Tan, Adv. Mater. 28, 574–578 (2016)

    Article  CAS  Google Scholar 

  27. J. Li, L. Fei, Z. Shujun, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  28. X. Sun, Z. Liu, H. Qian, Y. Liu, Y. Lyu, Ceram. Int. 47, 24207–24217 (2021)

    Article  CAS  Google Scholar 

  29. P. Jaiban, P. Kantha, K. Pengpat, S. Pojprapai, W. Wongkeo, M. Unruan, N. Pisitpipathsin, Mater. Res. Express 66305 (2019)

  30. L. Wang, Z. Zhou, X. Zhao, Z. Liu, R. Liang, X. Dong, Appl. Phys. Lett. 110, 102904 (2017)

    Article  CAS  Google Scholar 

  31. Z. Lu, G. Wang, L. Li, Y. Huang, A. Feteira, W. Bao, A.K. Kleppe, F. Xu, D. Wang, I.M. Reaney, Materials Today Physics 19, 100426 (2021)

    Article  CAS  Google Scholar 

  32. Z. Ning, Y. Jiang, J. Jian, J. Guo, J. Cheng, H. Cheng, J. Chen, J. Eur. Ceram. Soc. 40, 2338–2344 (2020)

    Article  CAS  Google Scholar 

  33. Y. Liu, H. Thong, Y. Cheng, J. Li, K. Wang, J. Appl. Phys. 129, 24102 (2021)

    Article  CAS  Google Scholar 

  34. J. Zhou, G. Xiang, J. Shen, H. Zhang, Z. Xu, H. Li, P. Ma, W. Chen, J. Electroceram. 44, 95–103 (2020)

    Article  CAS  Google Scholar 

  35. W. Jo, J. Rödel, Appl. Phys. Lett. 99, 42901 (2011)

    Article  CAS  Google Scholar 

  36. H. Simons, J.E. Daniels, J. Glaum, A.J. Studer, J.L. Jones, M. Hoffman, Appl. Phys. Lett. 102, 62902 (2013)

    Article  CAS  Google Scholar 

  37. L. Wu, S. Zhang, J. Liu, Q. Hu, J. Chen, Y. Wang, B. Xu, Y. Xia, J. Yin, Z. Liu, Ceram. Int. 42, 13783–13789 (2016)

    Article  CAS  Google Scholar 

  38. X. Qiao, A. Sheng, D. Wu, F. Zhang, B. Chen, P. Liang, J. Wang, X. Chao, Z. Yang, Chem. Eng. J. 408, 127368 (2021)

    Article  CAS  Google Scholar 

  39. R. Guo, H. Luo, D. Zhai, Z. Xiao, H. Xie, Y. Liu, X. Zhou, D. Zhang, Chem. Eng. J. 437, 135497 (2022)

    Article  CAS  Google Scholar 

  40. X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Prog. Mater. Sci. 122, 100836 (2021)

    Article  CAS  Google Scholar 

  41. F. Zhang, Z. Dai, Y. Pan, G. Chen, J. Liu, W. Liu, T. Karaki, Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7897

    Article  Google Scholar 

  42. W. Yichen, F. Yuzhu, L. Ningtao, P. Ping, Z. Mingxing, Y. Shiguang, C. Fei, D. Xianlin, W. Genshui, J. Mater. Chem. C. 7, 6222–6230 (2019)

    Article  Google Scholar 

  43. L. Zhu, X. Lei, L. Zhao, M.I. Hussain, G. Zhao, B. Zhang, Ceram. Int. 45, 20266–20275 (2019)

    Article  CAS  Google Scholar 

  44. Q. Li, M. Li, C. Wang, M. Zhang, H. Fan, Ceram. Int. 45, 19822–19828 (2019)

    Article  CAS  Google Scholar 

  45. Z. Yang, H. Du, L. Jin, Q. Hu, S. Qu, Z. Yang, Y. Yu, X. Wei, Z. Xu, J. Eur. Ceram. Soc. 39, 2899–2907 (2019)

    Article  CAS  Google Scholar 

  46. H. Wang, X. Jiang, X. Liu, R. Yang, Y. Yang, Q. Zheng, K.W. Kwok, D. Lin, Dalton Trans. 48, 17864–17873 (2019)

    Article  CAS  Google Scholar 

  47. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, H. Wei, J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    Article  CAS  Google Scholar 

  48. Q. Jin, L. Zhao, B. Cui, J. Wang, H. Ma, R. Zhang, Y. Liu, X. Zhang, J. Mater. Chem. C 8, 5248–5258 (2020)

    Article  CAS  Google Scholar 

  49. Q. Hu, T. Wang, L. Zhao, L. Jin, Z. Xu, X. Wei, Ceram. Int. 43, 35–39 (2017)

    Article  CAS  Google Scholar 

  50. H. Sun, X. Wang, Q. Sun, X. Zhang, Z. Ma, M. Guo, B. Sun, X. Zhu, Q. Liu, X. Lou, J. Eur. Ceram. Soc. 40, 2929–2935 (2020)

    Article  CAS  Google Scholar 

  51. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, J. Eur. Ceram. Soc. 39, 4778–4784 (2019)

    Article  CAS  Google Scholar 

  52. M.K. Bilal, R. Bashir, S.U. Asif, J. Wang, W. Hu, Ceram. Int. 47, 30922–30928 (2021)

    Article  CAS  Google Scholar 

  53. Z. Jiang, Y. Yuan, H. Yang, E. Li, S. Zhang, J. Am. Ceram. Soc. 105, 4027–4038 (2022)

    Article  CAS  Google Scholar 

  54. J. Ye, G. Wang, M. Zhou, N. Liu, X. Chen, S. Li, F. Cao, X. Dong, J. Mater. Chem. C Mater. Opt. Electron. Devices 7, 5639–5645 (2019)

    Article  CAS  Google Scholar 

  55. D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q. Zhao, X. Tan, I.M. Reaney, ACS Appl. Energy Mater. 1, 4403–4412 (2018)

    Article  CAS  Google Scholar 

  56. L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Chem. Eng. J. 383, 123154 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by JY and JX. The first draft of the manuscript was written by TR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunfei Liu or Yinong Lyu.

Ethics declarations

Conflict of interest

The authors declare that there is no known financial interests or personal relationship that could have been influential to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, T., Yuan, J., Xu, J. et al. Enhanced large field-induced strain and energy storage properties of Sr0.6La0.2Ba0.1TiO3-modified Bi0.5Na0.5TiO3 relaxor ceramics. J Mater Sci: Mater Electron 33, 15779–15790 (2022). https://doi.org/10.1007/s10854-022-08480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08480-7

Navigation