Skip to main content
Log in

Energy storage performance of Na0.5Bi0.5TiO3-based relaxor ferroelectrics with wide temperature range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi0.5Na0.5TiO3-based ceramics play a pivotal role in energy storage applications due to their significant attributes, such as large maximum polarization. However, the considerable remnant polarization limits its application impulse capacitor applications. To address this limitation, we conceived and synthesized lead-free relaxor ferroelectric ceramics with the composition (1 − x)(Bi0.5Na0.5)TiO3 − xSr(Ti0.5Zr0.5)O3 (BNT-SZT). By incorporating Sr(Ti0.5Zr0.5)O3, we enhanced the energy storage characteristics by inducing relaxor behavior and improving the dielectric breakdown strength. Notably, the 0.7BNT-0.3SZT ceramics exhibited a substantial recoverable energy storage density of 3.79 J/cm3 at 260 kV/cm. Furthermore, these ceramics demonstrated remarkable temperature stability, manifesting a consistent Wrec within the range of 1.41 to 1.59 J/cm3 across a broad temperature span of 20 to 160 °C at 150 kV/cm. Additionally, the 0.7BNT-0.3SZT ceramic displayed exceptional energy release properties, characterized by a high discharge energy density (Wd = 1.17 ~ 1.42 J/cm3) and rapid discharge time (t0.9 ~ 0.259 μs). These discernible outcomes underscore the potential of BNT-SZT ceramics as a promising lead-free material for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data file will be made available on request.

References

  1. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3, 1330001 (2013). https://doi.org/10.1142/S2010135X13300016

    Article  CAS  ADS  Google Scholar 

  2. L. Yao, Z. Pan, S. Liu, J. Zhai, H.D. Chen, Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly (vinylidene fluoride). ACS Appl. Mater. Inter. 8, 26343–26351 (2016). https://doi.org/10.1021/acsami.6b09265

    Article  CAS  Google Scholar 

  3. C. Hou, W. Huang, W. Zhao, D. Zhang, Y. Yin, X. Li, Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Inter. 9, 20484–20490 (2017). https://doi.org/10.1021/acsami.7b02225

    Article  CAS  Google Scholar 

  4. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009–8031 (2015). https://doi.org/10.3390/ma8125439

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  5. Z. Yao, Z. Song, H. Hao, Z. You, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017). https://doi.org/10.1002/adma.201601727

    Article  CAS  Google Scholar 

  6. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, D.P. Cann, BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 95, 3554–3561 (2012). https://doi.org/10.1111/j.1551-2916.2012.05340.x

    Article  CAS  Google Scholar 

  7. R. Muhammad, Y. Iqbal, I.M. Reaney, BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016). https://doi.org/10.1111/jace.14212

    Article  CAS  Google Scholar 

  8. C. Cui, Y. Pu, Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics. J. Mater. Sci. 53, 9830–9841 (2018). https://doi.org/10.1007/s10853-018-2282-8

    Article  CAS  ADS  Google Scholar 

  9. Y. Pu, M. Yao, L. Zhang, P. Jin, High energy storage density of 0.55Bi0.5Na0.5TiO3–0.45Ba0.85Ca0.15Ti0.9 − xZr0.1SnxO3 ceramics. J. Alloys Compd. 687, 689–695 (2016). https://doi.org/10.1039/D2QI02374A

    Article  CAS  Google Scholar 

  10. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416–420 (2015). https://doi.org/10.1016/j.jallcom.2015.02.225

    Article  CAS  Google Scholar 

  11. P. Peng, H. Nie, Z. Liu, G. Wang, X. Dong, Y. Zhang, C. Duan, X. Tang, Scaling behavior for (Bi0.5Na0.5)TiO3 based lead-free relaxor ferroelectric ceramics. J. Appl. Phys. 122, 064102 (2017). https://doi.org/10.1063/1.4997448

    Article  CAS  ADS  Google Scholar 

  12. L. Chen, H. Yu, J. Wu, S. Deng, H. Liu, L. Zhu, H. Qi, J. Chen, Large energy capacitive high-entropy lead-free ferroelectrics. Nano-micro Lett. 15, 65 (2023). https://doi.org/10.1007/s40820-023-01036-2

    Article  ADS  Google Scholar 

  13. Y. Lin, D. Li, M. Zhang, H. Yang, (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J. Mater. Chem. C 8, 2258–2264 (2020). https://doi.org/10.1039/C9TC06218A

    Article  CAS  Google Scholar 

  14. L. Zhang, Y. Pu, M. Chen, Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications. Ceram. Int. 46, 98–105 (2020). https://doi.org/10.1016/j.ceramint.2019.08.238

    Article  CAS  Google Scholar 

  15. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.-G. Ye, H. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281–288 (2019). https://doi.org/10.1039/C8TC04447C

    Article  CAS  Google Scholar 

  16. B.W. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104112 (2010). https://doi.org/10.1103/PhysRevB.82.104112

    Article  CAS  ADS  Google Scholar 

  17. D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu, J. Liu, Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J. Mater. Chem. C 8, 591–601 (2020). https://doi.org/10.1039/C9TC05528B

    Article  CAS  ADS  Google Scholar 

  18. P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.-J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry, High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581–2592 (2009). https://doi.org/10.1021/nn9006412

    Article  CAS  PubMed  Google Scholar 

  19. J. Zhang, Y. Lin, L. Wang, Y. Yang, H. Yang, Q. Yuan, Significantly enhanced energy storage density in sodium bismuth titanate-based ferroelectrics under low electric fields. J. Eur. Ceram. Soc. 40, 5458–5465 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.059

    Article  CAS  Google Scholar 

  20. F. Yang, Z. Pan, Z. Ling, D. Hu, J. Ding, P. Li, J. Liu, J. Zhai, Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J. Eur. Ceram. Soc. 41, 2548–2558 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.049

    Article  CAS  Google Scholar 

  21. D. Li, Z.Y. Shen, Z. Li, W. Luo, F. Song, X. Wang, Z. Wang, Y. Li, Optimization of polarization behavior in (1–x)BSBNT–xNN ceramics for pulsed power capacitors. J. Mater. Chem. C 8, 7650–7657 (2020). https://doi.org/10.1039/D0TC01699C

    Article  CAS  Google Scholar 

  22. Q. Su, J. Zhu, Z. Ma, X. Meng, Y. Zhao, Y. Li, X. Hao, Enhanced energy-storage properties and charge-discharge performances in Sm3+ modified (Na0.5Bi0.5)TiO3-SrTiO3 lead-free relaxor ferroelectric ceramics. Mater. Res. Bull. 148, 111675 (2022). https://doi.org/10.1016/j.materresbull.2021.111675

    Article  CAS  Google Scholar 

  23. L. Zhang, Y. Pu, M. Chen, F. Zhuo, C. Dietz, T. Frömling, Decreasing polar-structure size: Achieving superior energy storage properties and temperature stability in Na0.5Bi0.5TiO3-based ceramics for low electric field and high-temperature applications. J. Eur. Ceram. Soc. 41, 5890–5899 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.036

    Article  CAS  Google Scholar 

  24. S. Zhou, Y. Pu, X. Zhang, Y. Shi, Z. Gao, Y. Feng, G. Shen, X. Wang, D. Wang, High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem. Eng. J. 427, 131684 (2022). https://doi.org/10.1016/j.cej.2021.131684

    Article  CAS  Google Scholar 

  25. S. Li, P. Shi, X. Zhu, B. Yang, X. Zhang, R. Kang, Q. Liu, Y. Gao, H. Sun, X. Lou, Enhanced energy storage properties in lead-free NaNbO3-Sr0.7Bi0.2TiO3-BaSnO3 ternary ceramic. J. Mater. Sci. 56, 11922–11931 (2021). https://doi.org/10.1007/s10853-021-06075-x

    Article  CAS  ADS  Google Scholar 

  26. R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J. Alloys Compd. 30, 152356 (2020). https://doi.org/10.1016/j.jallcom.2019.152356

    Article  CAS  Google Scholar 

  27. L. Yang, X. Kong, Z. Cheng, S. Zhang, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019). https://doi.org/10.1039/C9TA01165J

    Article  CAS  Google Scholar 

  28. P. Shi, X. Zhu, X. Lou, B. Yang, Q. Liu, C. Kong, S. Yang, L. He, R. Kang, J. Zhao, Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties. Chem. Eng. J. 428, 132612 (2022). https://doi.org/10.1016/j.cej.2021.132612

    Article  CAS  Google Scholar 

  29. B. Chu, J. Hao, P. Li, Y. Li, W. Li, L. Zheng, H. Zeng, High-Energy storage properties over a broad temperature range in La-modified BNT-based lead-free ceramics. ACS Appl. Mater. Inter. 14, 19683–19696 (2022). https://doi.org/10.1021/acsami.2c01863

    Article  CAS  Google Scholar 

  30. H. Yang, Z. Cai, C. Zhu, P. Feng, X. Wang, Ultra-High energy storage performance in BNT-based ferroelectric ceramics with simultaneously enhanced polarization and breakdown strength. ACS Sustain. Chem. Eng. 10, 9176–9183 (2022). https://doi.org/10.1021/acssuschemeng.2c02155

    Article  CAS  Google Scholar 

  31. Z. Li, D.X. Li, Z.Y. Shen, X. Zeng, F. Song, W. Luo, X. Wang, Z. Wang, Y. Li, Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 11, 283–294 (2022). https://doi.org/10.1007/s40145-021-0532-8

    Article  CAS  Google Scholar 

  32. J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi, Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Appl. Electron. Ma. 4, 735–743 (2022). https://doi.org/10.1021/acsaelm.1c01129

    Article  CAS  Google Scholar 

  33. L. Tang, Z. Yu, Z. Pang, J. Zhao, Z. Fu, X. Chen, H. Li, P. Li, J.J. Liu, J. Zhai, Giant energy storage density with antiferroelectric-like properties in BNT-Based ceramics via phase structure engineering. Small 19, 2302346 (2023). https://doi.org/10.1002/smll.202302346

    Article  CAS  Google Scholar 

  34. L. Tang, Z. Pan, J. Zhao, Y. Shen, X. Chen, H. Li, P. Li, Y. Zhang, J.J. Liu, J. Zhai, Significantly enhanced energy storage capability of BNT-based ceramics via optimized sintering aids. J. Alloys Compd. 935, 168124 (2023). https://doi.org/10.1016/j.jallcom.2022.168124

    Article  CAS  Google Scholar 

  35. L. Chen, S. Deng, H. Liu, W. Jie, H. Qi, J. Chen, Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022). https://doi.org/10.1038/s41467-022-30821-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. W. Zhu, Z.Y. Shen, W. Deng, W. Luo, F. Song, X. Zeng, Z. Wang, Y. Li, A review: (Bi, Na)TiO3 (BNT)-based energy storage ceramics. J. Materiomics (2023). https://doi.org/10.1016/j.jmat.2023.05.002

    Article  Google Scholar 

  37. D. Li, X. Zeng, Z. Li, Z.Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10, 675–703 (2021). https://doi.org/10.1007/s40145-021-0500-3

    Article  CAS  Google Scholar 

  38. X. Qiao, F. Zhang, W. Di, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020). https://doi.org/10.1016/j.cej.2020.124158

    Article  CAS  Google Scholar 

  39. X. Chen, X. Qiao, L. Zhang, Q. Zhang, J. He, J. Mu, X. Hou, X. Chou, W. Geng, Temperature dependence of ferroelectricity and domain switching behavior in Pb(Zr0.3Ti0.7)O3 ferroelectric thin films. Ceram. Int. 45, 18030–18036 (2019). https://doi.org/10.1016/j.ceramint.2019.06.022

    Article  CAS  Google Scholar 

  40. J. Guo, H. Yu, Y. Ren, H. Qi, X. Yang, Y. Deng, S.T. Zhang, J. Chen, Multi-symmetry high-entropy relaxor ferroelectric with giant capacitive energy storage. Nano Energy 112, 108458 (2023). https://doi.org/10.1016/j.nanoen.2023.108458

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China and Education Department of Jiangxi Province are gratefully acknowledged. The authors truly acknowledge the infrastructural support received from the Department of Material Science and Engineering at Jingdezhen Ceramic University.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52062018) and Education Department of Jiangxi Province (Grant No. GJJ2201044).

Author information

Authors and Affiliations

Authors

Contributions

XJ was responsible for conceptualization, methodology, data curation, writing, reviewing, and editing of the manuscript, visualization, supervision, and funding acquisition. Material preparation, data collection, and analysis were performed by HW and XN. BX assisted in dielectric measurements of the samples, discussion of the results, and reviewing of the manuscript. XH and CC participated in supervision of the work, discussion of the results, and reviewing of the manuscript. The first draft of the manuscript were written by XN and HW. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xiangping Jiang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Wang, H., Xu, B. et al. Energy storage performance of Na0.5Bi0.5TiO3-based relaxor ferroelectrics with wide temperature range. J Mater Sci: Mater Electron 35, 203 (2024). https://doi.org/10.1007/s10854-023-11892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11892-8

Navigation