Skip to main content

Advertisement

Log in

Triboelectric nanogenerator based on polyaniline nanorods incorporated PDMS composites through a facile synthetic route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENG) open up a new technique for developing green power sources through effective harvesting and conversion of mechanical energy. This work develops a novel TENG with room temperature cured polyaniline (PANI) /polydimethylsiloxane (PDMS) composite. PANI/PDMS-based TENG exhibit an output voltage of 21.5 V, short-circuit current density of 0.8 mA/m2 with 1.5 wt% of PANI nanorods in PDMS matrix. The addition of para-toluene sulfonic acid (p-TSA) doped PANI to the PDMS led to a more significant improvement of TENG output performance of the neat PDMS due to the electron donor-acceptor concept according to the triboelectric series. The effect of the concentration of PANI filler on the output performance of PANI/PDMS TENG is also analyzed. PANI/PDMS composites’ superior performances compared to neat PDMS are attributed to the intensified negative charges on PDMS from amine functional groups of PANI chains. Additionally, the ability of the prepared composite to light up the LEDs by simple finger tapping hints at the utility of the proposed composite material for power production by using unused mechanical energy from the ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250 (2015)

    Article  CAS  Google Scholar 

  2. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447 (2014)

    Article  CAS  Google Scholar 

  3. S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339 (2012)

    Article  CAS  Google Scholar 

  4. G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett. 13, 847 (2013)

    Article  CAS  Google Scholar 

  5. Y. Zhou, W. Deng, J. Xu, J. Chen, Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Rep. Phys. Sci. 1, 100142 (2020)

    Article  CAS  Google Scholar 

  6. W. Seung, M. Gupta, K. Lee, K.-S. Shin, J.-H. Lee, T. Yun Kim, S. Kim, J. Lin, J.Ho Kim, S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501-3509 (2015)

  7. Y. Zou, J. Xu, K. Chen, J. Chen, Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 6, 2000916 (2021)

    Article  CAS  Google Scholar 

  8. S. Jang, J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. 8, 14287 (2018)

    Article  Google Scholar 

  9. J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 8, 736 (2015)

    Article  Google Scholar 

  10. V. Harnchana, H.V. Ngoc, W. He, A. Rasheed, H. Park, V. Amornkitbamrung, D.J. Kang, Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl. Mater. Interfaces 10, 25263 (2018)

    Article  CAS  Google Scholar 

  11. S. Yan, J. Lu, W. Song, R. Xiao, Flexible triboelectric nanogenerator based on cost-effective thermoplastic polymeric nanofiber membranes for body-motion energy harvesting with high humidity-resistance. Nano Energy 48, 248 (2018)

    Article  CAS  Google Scholar 

  12. Ru.S. Ahmad, A. Haleem, Z. Haider, U.P. Claver, A. Fareed, I. Khan, M.K. Mbogba, K. Memon, W. Ali, W. He, P. Hu, G. Zhao, Realizing the capability of negatively charged graphene oxide in the presence of conducting polyaniline for performance enhancement of tribopositive material of triboelectric nanogenerator. Adv. Electron. Mater. 6, 2000034 (2020)

    Article  CAS  Google Scholar 

  13. J.E. Huheey, The electronegativity of multiply bonded groups. J. Phys. Chem. 70, 2086 (1966)

    Article  CAS  Google Scholar 

  14. S. Sripadmanabhan Indira, C. Aravind Vaithilingam, K.S.P. Oruganti, F. Mohd, S. Rahman, Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges, Nanomaterials (Basel, Switzerland) 9,773(2019)

  15. H. Huang, Y. Wang, J. Hu, Q. Yang, L. Li, D. Wang, J. Yao, J. Huang, Polyaniline–poly(styrene sulfonate) hydrogel derived hierarchically porous N, S-codoped carbon for high-performance supercapacitors. J. Mater. Sci.: Mater. Electron. 32, 8916 (2021)

    CAS  Google Scholar 

  16. A. Atta, M.M. Abdelhamied, D. Essam, M. Shaban, A.H. Alshammari, M. Rabia, Structural and physical properties of polyaniline/silver oxide/silver nanocomposite electrode for supercapacitor applications. Int. J. Energy Res. 46, 6702 (2022)

    Article  CAS  Google Scholar 

  17. J. Park, S. Jo, Y. Kim, S. Zaman, D. Kim, Electrospun nanofiber covered polystyrene micro-nano hybrid structures for triboelectric nanogenerator and supercapacitor. Micromachines 13, 380 (2022)

    Article  Google Scholar 

  18. R. Kandpal, M. Shahadat, R. Adnan, S.W. Ali, S.Z. Ahammad, Polyaniline-Based Flexible Nanocomposite Materials, Biorenewable Nanocomposite Materials, Vol. 1: Electrocatalysts and Energy Storage, American Chemical Society 367(2022)

  19. A.L. Pang, M.R. Husin, A. Arsad, M. Ahmadipour, Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites. J. Mater. Sci.: Mater. Electron. 32, 9574 (2021)

    CAS  Google Scholar 

  20. S. Singh, R.K. Tripathi, M.K. Gupta, G.I. Dzhardimalieva, I.E. Uflyand, B. Yadav, 2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study. J. Colloid Interface Sci. 600, 572 (2021)

    Article  CAS  Google Scholar 

  21. S. Cui, Y. Zheng, J. Liang, D. Wang, Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 11, 1873 (2018)

    Article  CAS  Google Scholar 

  22. B. Dudem, A.R. Mule, H.R. Patnam, J.S. Yu, Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy 55, 305 (2019)

    Article  CAS  Google Scholar 

  23. T. Remyamol, H. John, P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline. Carbon 59, 308 (2013)

    Article  CAS  Google Scholar 

  24. K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Met. 159, 595 (2009)

    Article  CAS  Google Scholar 

  25. I. Sedenkova, M. Trchova, J. Stejskal, Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies. Polym. Degrad. Stab. 93, 2147 (2008)

    Article  CAS  Google Scholar 

  26. T.-M. Wu, Y.-W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47, 3576 (2006)

    Article  CAS  Google Scholar 

  27. R. Vinoth, S.G. Babu, V. Bharti, V. Gupta, M. Navaneethan, S.V. Bhat, C. Muthamizhchelvan, P.C. Ramamurthy, C. Sharma, D.K. Aswal, Y. Hayakawa, B. Neppolian, Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. Sci. Rep. 7, 43133 (2017)

    Article  CAS  Google Scholar 

  28. E.J. Jelmy, S. Ramakrishnan, M. Rangarajan, N.K. Kothurkar, Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull. Mater. Sci. 36, 37 (2013)

    Article  CAS  Google Scholar 

  29. V. Saadattalab, A. Shakeri, H. Gholami, Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices. Prog. Nat. Sci. Mater. Int. 26, 517 (2016)

    Article  CAS  Google Scholar 

  30. L. Téllez, J. Rubio, F. Rubio, E. Morales, J.L. Oteo, FT-IR study of the hydrolysis and polymerization of tetraethyl orthosilicate and polydimethyl siloxane in the presence of tetrabutyl orthotitanate. Spectrosc. Lett. 37, 11 (2004)

    Article  Google Scholar 

  31. X. Cui, G. Zhu, Y. Pan, Q. Shao, C. Zhao, M. Dong, Y. Zhang, Z. Guo, Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance. Polymer 138, 203 (2018)

    Article  CAS  Google Scholar 

  32. C. Bai, X. Zhang, J. Dai, J. Wang, Synthesis of UV crosslinkable waterborne siloxane–polyurethane dispersion PDMS-PEDA-PU and the properties of the films. J. Coat. Technol. Res. 5, 251 (2008)

    Article  CAS  Google Scholar 

  33. N.K. Sethy, Z. Arif, P.K. Mishra, P. Kumar, Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties. J. Polym. Eng. 39, 679 (2019)

    Article  CAS  Google Scholar 

  34. D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42, 135 (2009)

    Article  CAS  Google Scholar 

  35. S. Cui, Y. Zheng, J. Liang, D. Wang, Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 11, 1873 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Dr. Saji K.J., Assistant Professor and Vijoy K.V, Research Scholar of International School of Photonics, Cochin University of Science and Technology for their inputs in the measurement of triboelectric responses. Ms. Divya Jose gratefully acknowledges University Grants Commision (UGC) India, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

DJ and JEJ made equal contribution to the work reported in this manuscript. HJ: conceptualization, design of the study and overall supervision. DJ and JEJ: preparation of the samples, characterization, acquisition of data, and manuscript preparation. SPS: help to develop set-up for TENG measurements. RJ: A partial supervision of the study.

Corresponding author

Correspondence to Honey John.

Ethics declarations

Conflict of interest

The authors listed in the manuscript have NO affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript and hereby we declare there is no conflict of interest.

Note

The process mentioned in the manuscript for the preparation of PANI/PDMS composites and their TENG performance evaluation has been filed for an Indian patent with application number 201941047844 dated on 22nd November, 2019.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, D., Jelmy, E.J., Subin, P.S. et al. Triboelectric nanogenerator based on polyaniline nanorods incorporated PDMS composites through a facile synthetic route. J Mater Sci: Mater Electron 33, 15408–15421 (2022). https://doi.org/10.1007/s10854-022-08448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08448-7

Navigation