Skip to main content

Advertisement

Log in

Egg white-mediated synthesis of BiFeO3 cubes and their enhanced photocatalytic degradation properties under solar irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the egg white-mediated synthesis of BiFeO3 (BFO) cubes has been demonstrated using it as metal complex-forming agent during the sol–gel process. The BiFeO3 phase is confirmed using XRD technique, while the XPS spectra confirmed the native oxidation state of the elements and chemical composition. The XPS studies also showed that synthesized BFO particles via conventional sol–gel method possess oxygen vacancies, while no such defect is observed in BFO cubes. The cubic morphology with average size of 150 nm is observed from their FESEM images, while irregular particles of size around 300 nm is observed for BFO synthesized via conventional sol–gel process. The bandgap energy of particles and cubes is estimated to be around 2.32 and 2.36 eV, respectively, and the observed reduced bandgap energy could be due to the defects induced new energy level in BFO particles, while the increased bandgap energy of BFO cubes is attributed to their discrete band energy structure due to their uniform cubic morphology. The solar-driven photocatalytic efficiency toward degradation of methylene blue (MB) dye is found to be enhanced for BFO cubes (99.6%) as compared to particles (73.2%) at the end of 3 h, which attributed to the existence of improved charge separation, recombination resistance, rich surface-active sites, and suitable redox potential in BFO cubes as corroborated from their XPS, PL, and scavenger studies. The photocatalytic recyclability tests up to 5 cycles indicated that BFO cubes is photochemically stable and can be employed for durable photocatalytic degradation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Jiagang, F. Zhen, X. Dingquan, Z. Jianguo, W. John, Thin films and nanostructures. Progr. Mater. Sci. (2016). https://doi.org/10.1016/j.pmatsci.2016.09.001

    Article  Google Scholar 

  2. W. Nan, L. Xudong, H. Lu, Z. Zhiqiang, Z. Renyun, O. HÃ¥kan, Y. Ya, Nanomicro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6.

  3. L. Shiva, S. Savita, T. Monika, G. Vinay, J. Phys. Chem. Solids (2020). https://doi.org/10.1016/j.jpcs.2020.109602

    Article  Google Scholar 

  4. M. Nadeem, W. Khan, S. Khan, J. Mater. Sci. 31, 11177–11194 (2020). https://doi.org/10.1007/s10854-020-03666-3

    Article  CAS  Google Scholar 

  5. M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Mater. Res. Bull. 48, 2878–2885 (2013). https://doi.org/10.1016/j.materresbull.2013.04.008

    Article  CAS  Google Scholar 

  6. R. Zahra, K. Javad, M. Mohsen, H. Alireza, D. Abolfazl, Environ. Nanotechnol. Monit. Manag 11, 100198 (2019). https://doi.org/10.1016/j.enmm.2018.100198

    Article  Google Scholar 

  7. S. Bharathkumar, M. Sakar, N. Ponpandian, S. Balakumar, Mater. Res. Bull. 101, 107–115 (2018). https://doi.org/10.1016/j.materresbull.2017.12.029

    Article  CAS  Google Scholar 

  8. M. Sakar, S. Balakumar, P. Saravanan, S. Bharathkumar, Nanoscale 7, 10667–10679 (2015). https://doi.org/10.1039/c5nr01079a

    Article  CAS  Google Scholar 

  9. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M. Iqbal, Environ. Int. 122, 52–66 (2019). https://doi.org/10.1016/j.envint.2018.11.038

    Article  CAS  Google Scholar 

  10. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr., D. Mohan, Chem. Rev. 119(6), 3510–3673 (2019). https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  11. I.O. Tijani, O.O. Fatoba, G. Madzivire, Water Air Soil Pollut. (2014). https://doi.org/10.1007/s11270-014-2102-y

    Article  Google Scholar 

  12. A.D. Bokare, W. Choi, J. Hazard. Mater 275, 121–135 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.054

    Article  CAS  Google Scholar 

  13. N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M. Sakar, Int. J. Hydrog. Energy 45, 7584–7615 (2020). https://doi.org/10.1016/j.ijhydene.2019.09.041

    Article  CAS  Google Scholar 

  14. C.-C. Nguyen, M. Sakar, M.-H. Vu, T.-O. Do. Ind. Eng. Chem. Res 58, 3698–3737 (2019). https://doi.org/10.1021/acs.iecr.8b05792

    Article  CAS  Google Scholar 

  15. S. Bharathkumar, M. Sakar, K.R. Vinod, S. Balakumar, Phys. Chem. Chem. Phys. 17, 17745–17754 (2015). https://doi.org/10.1039/c5cp01640a

    Article  CAS  Google Scholar 

  16. A. Haruna, I. Abdulkadir, S.O. Idris, Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e03237

    Article  Google Scholar 

  17. S. Bharathkumar, M. Sakar, M. Navaneethan, J. Archana, Mater. Lett. 304, 130475 (2021). https://doi.org/10.1016/j.matlet.2021.13047

    Article  CAS  Google Scholar 

  18. S. Bharathkumar, M. Sakar, S. Balakumar, J. Phys. Chem. C 120(33), 18811–18821 (2016). https://doi.org/10.1021/acs.jpcc.6b04344

    Article  CAS  Google Scholar 

  19. K. Chybczyńska, P. Lawniczak, B. Hilczer, B. Leska, R. Pankiewicz, A. Pietraszko, L. Kępiński, T. Kałuski, P. Cieluch, F. Matelski, B. Andrzejewski, J. Mater. Sci. 49, 2596–2604 (2014). https://doi.org/10.1007/s10853-013-7957-6

    Article  CAS  Google Scholar 

  20. B. Kharisov, Recent Pat. Nanotechnol. 2, 190–200 (2008). https://doi.org/10.2174/187221008786369651

    Article  CAS  Google Scholar 

  21. C. Nandhini, S. Balakumar, AIP Conf. Proc. 2265, 030636 (2020). https://doi.org/10.1063/5.0016805

    Article  CAS  Google Scholar 

  22. F.C. Lü, K. Yin, K.X. Fu, Y.N. Wang, J. Ren, Q. Xie, Ceram. Int. 43(18), 16101–16106 (2017). https://doi.org/10.1016/j.ceramint.2017.08.171

    Article  CAS  Google Scholar 

  23. R. Syed, U. Muhammad, B.Z.U. Din, A.S. Ullah, M.A. Rehman, AIP Adv. 9, 055025 (2019). https://doi.org/10.1063/1.5095468

    Article  CAS  Google Scholar 

  24. N.B. Delfard, H. Maleki, A.M. Badizi, M. Taraz, J. Super Cond. Nov. Magn 33(4), 1207–1214 (2020). https://doi.org/10.1007/s10948-019-05294-3

    Article  CAS  Google Scholar 

  25. R. Radha, Y.R. Kumar, M. Sakar, K.R. Vinod, S. Balakumar, Appl. Catal. B 225, 386–396 (2018). https://doi.org/10.1016/j.apcatb.2017.12.004

    Article  CAS  Google Scholar 

  26. X. Liu, K. Li, C. Wu, Y. Zhou, C. Pei, Ceram. Int. 45(18), 23869–23889 (2019)

    Article  CAS  Google Scholar 

  27. Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami, M. Darroudi, Polyhedron 178, 114351 (2020). https://doi.org/10.1016/j.poly.2020.114351

    Article  CAS  Google Scholar 

  28. S. Ahmed, Annu, S. Ikram, S. Y. Salprima, J. Photochem. Photobiol. B. S1011–1344(16) 30132–4 (2016). https://doi.org/10.1016/j.jphotobiol.2016.04.034

  29. N.V. Kalpana, V.D. Rajeswari, Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/3569758

    Article  Google Scholar 

  30. M. He, P. Luo, J. Hong, X. Wang, H. Wu, R. Zhang, F. Qu, Y. Xiang, W. Xu, ACS Omega 4(1), 2377–2386 (2019). https://doi.org/10.1021/acsomega.8b03224

    Article  CAS  Google Scholar 

  31. A. Albanese, S.P. Tang, C.W.W. Chan, Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124

    Article  CAS  Google Scholar 

  32. Q.J. Ángel, K.V. Vignaswaran, D. Marco, A. Miguel, C. Alicia, Materials 12, 1515 (2019). https://doi.org/10.3390/ma12091515

    Article  CAS  Google Scholar 

  33. S.N. Tripathy, K.K. Mishra, S. Sen, B.G. Mishra, D.K. Pradhan, R. Palai, J. Appl. Phys. 114, 144104 (2013). https://doi.org/10.1063/1.4824061

    Article  CAS  Google Scholar 

  34. A.A.C. Carraro, Sci. Agric. 63, 291–298 (2006). https://doi.org/10.1590/S0103-90162006000300013

    Article  Google Scholar 

  35. A.C.C. Alleoni, A.J. Antunes, Rev. Bras. Cienc. Avic 6, 77–82 (2004)

    Article  Google Scholar 

  36. H. Yongming, F. Linfeng, Z. Yiling, Y. Jikang, W. Yu, G. Haoshuang, J. Nanomater. 2011, 1–6 (2011). https://doi.org/10.1155/2011/797639

    Article  CAS  Google Scholar 

  37. S. Bharathkumar, M. Sakar, J. Archana, M. Navaneethan, S. Balakumar, Chemosphere 284, 131280 (2021). https://doi.org/10.1016/j.chemosphere.2021.131280

    Article  CAS  Google Scholar 

  38. K.R. Vinod, P. Saravanan, M. Sakar, S. Balakumar, RSC Adv. 6, 45850–45857 (2016). https://doi.org/10.1039/c6ra04935d

    Article  Google Scholar 

  39. S. Pillai, D. Bhuwal, T. Shripathi, J. Mater. Sci. 24, 2950–2955 (2013). https://doi.org/10.1007/s10854-013-1196-0

    Article  CAS  Google Scholar 

  40. Y.L. Han, W.F. Liu, P. Wu, X.L. Xu, M.C. Guo, G.H. Rao, S.Y. Wang, J. Alloys Compd. 661, 115–121 (2016). https://doi.org/10.1016/j.jallcom.2015.11.157

    Article  CAS  Google Scholar 

  41. D.T. Kumar, S. Sweta, A.S.K. Sinha, Inorg. Chem. Commun. 117, 107945 (2020). https://doi.org/10.1016/j.inoche.2020.107945

    Article  CAS  Google Scholar 

  42. S. Jayababu, M. Inbasekaran, N. Sobana, Inorg. Chem. Commun. (2020). https://doi.org/10.1016/j.inoche.2020.108306

    Article  Google Scholar 

  43. M.S. Akter, W. Zhiliang, L. Tongen, C. Peng, L. Bin, W. Lianzhou, Chem. Commun. (2020). https://doi.org/10.1039/d0cc04455e

    Article  Google Scholar 

  44. B. Wang, J. Liu, S. Yao, F. Liu, Y. Li, J. He, M. Wang, J. Mater. Chem. 9, 17143–17172 (2021). https://doi.org/10.1039/d1ta03895h

    Article  CAS  Google Scholar 

  45. H.R. Chandan, M. Sakar, M. Ashesh, T.M. Ravishankar, T. Ramakrishnappa, R.T. Sergio, R.G. Balakrishna, Mater. Res. Bull. 104, 212–219 (2018). https://doi.org/10.1016/j.materresbull.2018.04.014

    Article  CAS  Google Scholar 

  46. V.R. Preethi, S. John, G. Bhalerao, B. Gupta, J. Singh, S. Singh, Solid State Sci. 109, 106450 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the CSIR (Council of Scientific & Industrial Research) for funding (09/115/(0783)/2018-EMR-I dt.13-04-2018) and thankfully acknowledge the MHRD-NCNSNT for Instrument facility to perform the part of research work.

Funding

Funding was provided by Council of Scientific and Industrial Research, India (09/115/(0783)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

SB and SB contributed to conceptualization; SB and MS contributed to data curation, formal analysis, and investigation : SB contributed to funding acquisition, supervision, and writing-original draft ; SB, MS, and SB contributed to writing-review and editing .

Corresponding author

Correspondence to S. Balakumar.

Ethics declarations

Conflict of interest

Authors do not have any potential conflicts of interest to declare (both financial and non- financial).

Research involving human and animal participants

This research does not include any Human participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathkumar, S., Sakar, M. & Balakumar, S. Egg white-mediated synthesis of BiFeO3 cubes and their enhanced photocatalytic degradation properties under solar irradiation. J Mater Sci: Mater Electron 33, 12638–12647 (2022). https://doi.org/10.1007/s10854-022-08213-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08213-w

Navigation