Skip to main content
Log in

Sol–gel derived iron-manganese oxide nanoparticles: a promising dual-functional material for solar photocatalysis and antimicrobial applications

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, cubic bixbyite FeMnO3 oxide nanoparticles were synthesized via a one-pot co-precipitation method. The effects of calcination temperature on the nanoparticles structural, optical, and morphological properties were investigated by calcining them at 700, 900, and 1100 °C in air for 2 h, which resulted in significant changes in their structural and optical properties. Fourier transform infrared spectroscopy confirmed the presence of Fe–O and Mn–O stretching vibrations and X-ray diffraction analysis showed that the nanoparticles transformed from an amorphous to a crystalline phase upon calcination. Moreover, when the nanoparticles were calcined at higher temperatures, they displayed strong absorption in the visible and near-infrared regions, which resulted in a notable redshift in the optical band gap from 2.41 to 1.53 eV. Photocatalytic experiments demonstrated the nanoparticles excellent degradation capability in removing methylene blue from water under solar light irradiation. Specifically, the nanoparticles calcined at 1100 °C exhibited the highest photocatalytic efficiency with a maximum photo-degradation rate of 91%. Additionally, the nanoparticles displayed good antibacterial activity against Bacillus meurellus, Acetobactor rhizospherensis, Escherichia coli but were less effective against Bacillus subtilis.

Graphical abstract

The XRD patterns of Fe-Mn binary oxide (FeMnO3) nanoparticles (left side of figure) indicate a transformation from an amorphous to a crystalline structure. In the middle figure, the photodegradation of methylene blue is depicted at various time intervals using FeMnO3 photocatalyst under sunlight irradiation. Additionally, the proposed mechanism for the degradation of methylene blue is also illustrated on the right side figure.

Highlights

  • Fe-Mn binary oxide with cubic bixbyite structure was successfully prepared via co-precipitation method.

  • Nanoparticles displays strong absorption in visible and near IR regions.

  • Optical bandgap significantly reduces with calcination temperature.

  • Fe-Mn binary oxide exhibits excellent multifunctional properties as solar light photocatalyst and antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Muneer I, Farrukh MA, Ali D, Bashir F (2021) Heterogeneous photocatalytic degradation of organic dyes by highly efficient GdCoSnO3. Mater Sci Eng B 265:115028

    Article  CAS  Google Scholar 

  2. Muneer I, Farrukh MA (2022) Structural, optical, photoluminescence, photocatalytic and antifungal features of Gd/Mn2SnO4 nanocomposite annealed at different temperatures. J Mater Sci: Mater Electron 33:1263–1279

    CAS  Google Scholar 

  3. Ebrahimi M, Akhavan O (2022) Nanomaterials for photocatalytic degradations of analgesic, mucolytic and anti-biotic/viral/inflammatory drugs widely used in controlling SARS-CoV-2. Catalysts 12(6):667

    Article  CAS  Google Scholar 

  4. ShilpaAmulya MA, Nagaswarupa HP, AnilKumar MR, Ravikumar CR, Kusuma KB (2020) Enhanced photocatalytic and electrochemical properties of Cu doped NiMnFe2O4 nanoparticles synthesized via probe sonication method. Appl Surf Sci Adv 2:100038

    Article  Google Scholar 

  5. Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloy Compd 553:19–29

    Article  CAS  Google Scholar 

  6. Gao M, Liu G, Gao Y, Chen G, Huang X, Xu X, Wang J, Yang X, Xu D (2021) Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Anal Chem 137:116226

    Article  CAS  Google Scholar 

  7. Chehhat K, Mecif A, Mahdjoub AH, Nazir R, Pandit MA, Salhi F, Noua A (2023) Sol-gel synthesis of porous cobalt-doped ZnO thin films leading to rapid and large scale Orange-II photocatalysis. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-023-06060-7

  8. Masoumbeigi H, Rezaee A (2015) Removal of methylene blue (MB) dye from synthetic wastewater using UV/H2O2 advanced oxidation process. J Health Policy Sustain Health 2:160–166

    Google Scholar 

  9. Wang N, Wu L, Li J, Mo J, Peng Q, Li X (2020) Construction of hierarchical Fe2O3@MnO2 core/shell nanocube supported C3N4 for dual Z-scheme photocatalytic water splitting. Sol Energy Mater Sol Cells 215:110624

    Article  CAS  Google Scholar 

  10. Buccolieri A, Serra A, Maruccio G, Monteduro AG, Padmanabhan SK, Licciulli A, Bonfrate V, Salvatore L, Manno D, Calcagnile L, Giancane G (2017) Synthesis and characterization of mixed iron-manganese oxide nanoparticles and their application for efficient nickel ion removal from aqueous samples. J Anal Methods Chem. https://doi.org/10.1155/2017/9476065

  11. Yan G, Wang P, Li Y, Qin Z, Lan S, Yan Y, Zhang Q, Cheng X (2021) Adsorption-oxidation mechanism of δ-MnO2 to remove methylene blue adsorption science and technology. Adsorp Sci Technol 2021. https://doi.org/10.1155/2021/3069392

  12. Ali D, Butt MZ, Muneer I, Farrukh MA, Aftab M, Saleem M, Bashir F, Khan AU (2019) Synthesis and characterization of sol-gel derived La and Sm doped ZnO thin films: a solar light photo catalyst for methylene blue. Thin Solid Films 679:86–98

    Article  CAS  Google Scholar 

  13. Xiao J, Lv J, Lu Q (2022) Building Fe2O3/MoO3 nanorod heterojunction enables better tetracycline photocatalysis. Mater Lett 311:131580

    Article  CAS  Google Scholar 

  14. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220

    Article  CAS  Google Scholar 

  15. Dong L, Li Y, Chen D, Chen X, Zhang D (2021) Facilitated activation of peroxymonosulfate by loading ZIF-8 on Fe3O4-MnO2 for deep mineralization of bisphenol A. ACS EST Water 2:417–429

    Article  Google Scholar 

  16. Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4:4247–4255

    Article  CAS  Google Scholar 

  17. Dai D, Liang H, He D, Potgieter H, Li M (2021) Mn-doped Fe2O3/diatomite granular composite as an efficient Fenton catalyst for rapid degradation of an organic dye in solution. J Sol Gel Sci Technol 97:329–339

    Article  CAS  Google Scholar 

  18. Lai J, Shafi KVPM, Ulman A, Loos K, Yang N-L, Cui M-H, Vogt T, Estournès C, Locke DC (2004) Mixed iron−manganese oxide nanoparticles. J Phys Chem B 108:14876–14883

    Article  CAS  Google Scholar 

  19. Ghosh D, Dutta U, Haque A, Mordvinova NE, Lebedev OI, Pal K, Gayen A, Mahata P, Kundu AK, Seikh MM (2017) Evidence of low temperature spin glass transition in bixbyite type FeMnO3. Mater Sci Eng: B 226:206–210

    Article  CAS  Google Scholar 

  20. Ma Q, Dong R, Liu H, Zhu A, Qiao L, Ma Y, Wang J, Xie J, Pan J (2020) Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts. J Alloy Compd 820:153438

    Article  CAS  Google Scholar 

  21. Amulya MAS, Nagaswarupa HP, Kumar MRA, Ravikumar CR, Kusuma KB (2021) Sonochemical synthesis of MnFe2O4 nanoparticles and their electrochemical and photocatalytic properties. J Phys Chem Solids 148:109661

    Article  CAS  Google Scholar 

  22. Huang X, Liu L, Xi Z, Zheng H, Dong W, Wang G (2019) One-pot solvothermal synthesis of magnetically separable rGO/MnFe2O4 hybrids as efficient photocatalysts for degradation of MB under visible light. Mater Chem Phys 231:68–74

    Article  CAS  Google Scholar 

  23. Mandal B, Panda J, Paul PK, Sarkar R, Tudu B (2020) MnFe2O4 decorated reduced graphene oxide heterostructures: nanophotocatalyst for methylene blue dye degradation. Vacuum 173:109150

    Article  CAS  Google Scholar 

  24. Luciano AJR, de Soletti LS, Ferreira MEC, Cusioli LF, de Andrade MB, Bergamasco R, Yamaguchi NU (2020) Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. J Environ Chem Eng 8:104191

    Article  CAS  Google Scholar 

  25. Balarabe BY, Bowmik S, Ghosh A, Maity P (2022) Photocatalytic dye degradation by magnetic XFe2O3 (X: Co, Zn, Cr, Sr, Ni, Cu, Ba, Bi, and Mn) nanocomposites under visible light: a cost efficiency comparison. J Magn Magn Mater 562:169823

    Article  CAS  Google Scholar 

  26. Vasiljevic ZZ, Dojcinovic MP, Krstic JB, Ribic V, Tadic NB, Ognjanovic M, Auger S, Vidic J, Nikolic MV (2020) Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. RSC Adv 10:13879

    Article  CAS  Google Scholar 

  27. Siddiqui SI, Chaudhry SA (2018) Nigella sativa plant based nanocomposite-MnFe2O4/BC: An antibacterial material for water purification. J Clean Prod 200:996–1008

    Article  CAS  Google Scholar 

  28. Rahmayeni R, Oktavia Y, Stiadi Y, Arief S, Zulhadjri Z (2020) Spinel ferrite of MnFe2O4 synthesized in Piper betle Linn extract media and its application as photocatalysts and antibacterial. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2020.1721011

  29. Liu X, Qiu G, Zhao Y, Zhang N, Yi R (2007) Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J Alloy Compd 439:275–278

    Article  CAS  Google Scholar 

  30. Lee I, Kwak J, Haam S, Lee S-Y (2010) Dipeptide-assisted growth of uniform gallium oxohydroxide spindles. J Cryst Growth 312:2107–2112

    Article  CAS  Google Scholar 

  31. Yang C, Ju T, Wang X, Ji Y, Yang C, Lv H, Wang Y, Dong W, Dang F, Shi X, Wang W, Fan Y (2020) The preparation of a novel iron/manganese binary oxide for the efficient removal of hexavalent chromium [Cr(VI)] from aqueous solutions. RSC Adv 10:10612–10623

    Article  CAS  Google Scholar 

  32. Wang Y, Gao Y, Zhu Z, Zhang L, Zhao N, Fang Y, Zhu Y, Liu G (2021) Enhanced arsenic removal from aqueous solution by Fe/Mn-C layered double hydroxide composite. Adsorp Sci Technol. https://doi.org/10.1155/2021/8891643

  33. Ali D, Butt MZ, Muneer I, Bashir F, Hanif M, Khan TM, Abbasi SA (2021) Synthesis, characterization and antibacterial performance of transparent c-axis oriented Al doped ZnO thin films. Surf Interfaces 27:101452

    Article  CAS  Google Scholar 

  34. Ali D, Butt MZ, Arif B, Al-Ghamdi AA, Yakuphanoglu F (2017) The role of Al, Ba, and Cd dopant elements in tailoring the properties of c-axis oriented ZnO thin films. Phys B: Condens Matter 506:83–93

    Article  CAS  Google Scholar 

  35. Ali D, Butt MZ, Arif B, Al-Sehemi AG, Al-Ghamdi AA, Yakuphanoglu F (2017) Li induced enhancement in c-axis orientation and its effect on structural, optical, and electrical properties of ZnO thin films. Mater Res Express 4:026405

    Article  Google Scholar 

  36. Ali D, Butt MZ, Coughlan C, Caffrey D, Shvets IV, Fleischer K (2018) Nitrogen grain-boundary passivation of In-doped ZnO transparent conducting oxide. Phys Rev Mater 2:043402

    Article  CAS  Google Scholar 

  37. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  38. Ishtiaq M, Ali D, Ahmad R, Muneer I, Bashir F, Hanif M, Khan TM, Abbasi SA (2023) A comparison of antibacterial activity in dark-UV light in perspective ofsurface and structural properties of spray pyrolysis grown Cu doped Cr2O3 thin films. Surf Interfaces 37:102741

    Article  CAS  Google Scholar 

  39. Ali D, Butt MZ, Muneer I, Bashir F, Saleem M (2017) Correlation between structural and optoelectronic properties of tin doped indium oxide thin films. Optik 128:235–246

    Article  CAS  Google Scholar 

  40. Ali D, Butt MZ (2014) Structural characteristics and inverse Hall–Petch relation in high-purity nickel irradiated with nanosecond infrared laser pulses. Phys B: Condens Matter 444:77–84

    Article  CAS  Google Scholar 

  41. Aftab M, Butt MZ, Ali D, Bashir F, Aftab ZH (2021) Impact of copper doping in NiO thin films on their structure, morphology, and antibacterial activity against Escherichia Coli. Ceram Int 46:5037–5049

    Article  Google Scholar 

  42. Aftab M, Aftab A, Butt MZ, Ali D, Bashir F, Iqbal SS (2023) Surface hardness of pristine and laser-treated zinc as a function of indentation load and its correlation with crystallite size valued by Williamson-Hall analysis, size-strain plot, Halder-Wagner and Wagner-Aqua models. Mater Chem Phys 295:127117

    Article  CAS  Google Scholar 

  43. Habibi MH, Mosavi V (2017) Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of Basic Blue 12. J Mater Sci: Mater Electron 28:8473–8479

    CAS  Google Scholar 

  44. Habibi MH, Mosavi V (2017) Wet coprecipitation preparation of perovskite-type iron manganite nano powder pure phase using nitrate precursors: structural, opto-electronic, morphological and photocatalytic activity for degradation of Nile blue dye. J Mater Sci: Mater Electron 28:10270–10276

    CAS  Google Scholar 

  45. Bin H, Yao Z, Zhu S, Zhu C, Pan H, Chen Z, Wolverton C, Zhang D (2017) A high-performance anode material based on FeMnO3/graphene composite. J Alloy Compd 695:1223–1230

    Article  CAS  Google Scholar 

  46. Sun P, Shen G, Tan Q, Chen Q, Song R, Hu J (2021) Degradation of BTEXS with stable and pH-insensitive iron-manganese modified biochar from post pyrolysis. Chemosphere 263:128092

    Article  CAS  Google Scholar 

  47. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  Google Scholar 

  48. Dutta T, Sarkar R, Pakhira B, Ghosh S, Sarkar R, Barui A, Sarkar S (2015) ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). RSC Adv 5:80192–80195

    Article  CAS  Google Scholar 

  49. Prasanna VL, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO—surface defects mediated reactive oxygen species even in dark. Langmuir 31:9155–9162

    Article  Google Scholar 

  50. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288

    Article  CAS  Google Scholar 

  51. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  Google Scholar 

  52. Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860

    Article  CAS  Google Scholar 

  53. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881

    Article  CAS  Google Scholar 

  54. Wang YW, Cao A, Jiang Y, Zhang X, Liu JH, Liu Y, Wang H (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798

    Article  CAS  Google Scholar 

  55. Jannesari M, Akhavan O, Hosseini HRM, Bakhshi B (2023) Oxygen-rich graphene/ZnO2-Ag nanoframeworks with pH-switchable catalase/peroxidase activity as O2 nanobubble-self generator for bacterial inactivation. J Colloid Interface Sci 637:237–250

    Article  CAS  Google Scholar 

  56. Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, Palaniyappan J, Mesbah M, Chelliapan S, Palaninaicker S (2023) Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: photocatalytic, antimicrobial and larvicidal activity. Chemosphere 323:138263

    Article  CAS  Google Scholar 

  57. Kalaimurugan D, Lalitha K, Durairaj K, Sivasankar P, Park S, Nithya K, Shivakumar MS, Liu WC, Balamuralikrishnan B, Venkatesan S (2022) Biogenic synthesis of ZnO nanoparticles mediated from Borassus flabellifer (Linn): antioxidant, antimicrobial activity against clinical pathogens, and photocatalytic degradation activity with molecular modeling. Environ Sci Pollut Res 29:86308–86319

    Article  CAS  Google Scholar 

  58. Arokiyaraj S, Saravanan M, Prakash NKU, Arasu MV, Vijayakumar B, Vincent S (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull 48:3323–3327

    Article  CAS  Google Scholar 

  59. Behera SS, Patra JK, Pramanik K, Panda N, Thatoi H (2012) Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano Sci Eng 2:196–200

    Article  Google Scholar 

  60. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  CAS  Google Scholar 

  61. Saod WM, Hamid LL, Alaallah NJ, Ramizy A (2022) Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnol Rep 34:00729

    Google Scholar 

  62. Lu H, Zhang X, Khan SA, Li W, Wan L (2021) Biogenic synthesis of MnO2 nanoparticles with leaf extract of viola betonicifolia for enhanced antioxidant, antimicrobial, cytotoxic, and biocompatible applications. Front Microbiol 12:761084

    Article  Google Scholar 

  63. Yan Y, Jiang N, Liu X, Pan J, Li M, Wang C, Camargo PHC, Wang J (2022) Enhanced Spontaneous Antibacterial Activity of δ-MnO2 by Alkali Metals Doping. Front Bioeng Biotechnol 9:788574

    Article  Google Scholar 

  64. Li Y, Yang D, Wang S, Li C, Xue B, Yang L, Shen Z, Jin M, Wang J, Qiu Z (2018) The detailed bactericidal process of ferric oxide nanoparticles on E. coli. Molecules 23:606

    Article  Google Scholar 

  65. Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M (2020) Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 18:35

    Article  CAS  Google Scholar 

  66. Ezealigo US, Ezealigo BN, Aisida SO, Ezema FI (2021) Iron oxide nanoparticles in biological systems: antibacterial and toxicology perspective. JCIS Open 4:100027

    Article  Google Scholar 

  67. Patra JK, Baek K-H (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B: Biol 173:291–300

    Article  CAS  Google Scholar 

  68. Jagathesan G, Rajiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94

    Article  Google Scholar 

  69. Sharma AK, Pawar CA, Prasad NR, Yewale MA, Kamble DB (2018) Antimicrobial efficacy of green synthesized iron oxide nanoparticles. Mater Res Express 5:075402

    Article  Google Scholar 

  70. Vasantharaj S, Sathiyavimal S, Senthilkumar P, Oscar FL, Pugazhendhi A (2019) Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B: Biol 192:74–82

    Article  CAS  Google Scholar 

  71. Haneefa MM, Jayandran M, Balasubramanian V (2017) Evaluation of antimicrobial activity of green-synthesized manganese oxide nanoparticles and comparative studies with curcuminaniline functionalized nanoform. Asian J Pharm Clin Res 10:347–352

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the research activities of this paper. DA, IM, FB, MZB, AW, MH, MFMRW performed material preparation, data collection and analysis. The first draft of the manuscript was written by DA and IM, and all authors have commented on previous editions. MZB, MFMRW revised the English grammar of the original manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dilawar Ali or Iqra Muneer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, D., Muneer, I., Bashir, F. et al. Sol–gel derived iron-manganese oxide nanoparticles: a promising dual-functional material for solar photocatalysis and antimicrobial applications. J Sol-Gel Sci Technol 107, 452–466 (2023). https://doi.org/10.1007/s10971-023-06123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06123-9

Keyword

Navigation