Skip to main content
Log in

K-band microwave absorption analysis of sol–gel synthesized cobalt-substituted zinc spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt-substituted zinc spinel ferrites having chemical composition Zn1−xCoxFe2O4 with stoichiometric proportion ‘x’ equals 0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by sol–gel citrate route sintered at 1000 °C for 6 h. All the fabricated specimens have been characterized by using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy, and vector network analyzer. The XRD patterns ensured the existence of a cubic spinel crystal structure having single phase of space group Fd-3m. Decline in crystallite size (Dc) from 48.016 to 45.314 nm with an increase in cobalt content displayed the nanocrystalline nature of the synthesized specimens. The values of lattice constant (\({a}_{\mathrm{avg}}, {a}_{\mathrm{px}}, {a}_{\mathrm{true}},\; \mathrm{and}\; {a}_{\mathrm{th}}\)) obtained from four different approaches are perfectly coordinating with each other. The complex electromagnetic parameters (\({\varepsilon }_{r}\;{\mathrm{ and }\;\mu }_{r}\)) measured by VNA are found to be increasing with Co2+ doping in K-band (18–26.5 GHz) frequency range. The reflection loss study revealed that all the synthesized compositions have yielded more than 90% absorption intensity in the studied frequency band due to higher magnetic and dielectric losses of the synthesized ferrites thereby making them a potential candidate for the implementation of microwave absorbers at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Yes.

Code availability

No.

References

  1. X. Ren, G. Xu, Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+. J. Magn. Magn. Mater. 354, 44–48 (2014)

    Article  CAS  Google Scholar 

  2. A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)

    Article  CAS  Google Scholar 

  3. J. Zhang, R. Shu, Y. Wu, Z. Wan, X. Li, Facile synthesis of Co0.5Zn0.5Fe2O4 nanoparticles decorated reduced graphene oxide hybrid nanocomposites with enhanced electromagnetic wave absorption properties. Ceram. Int. 46, 15925–15934 (2020)

    Article  CAS  Google Scholar 

  4. V.K. Chakradhary, M.J. Akhtar, Absorption properties of CNF mixed cobalt nickel ferrite nanocomposite for radar and stealth applications. J. Magn. Magn. Mater. 525, 167592 (2021)

    Article  CAS  Google Scholar 

  5. Y. Gao, Z. Wang, R. Shi, J. Pei, H. Zhang, X. Zhou, Electromagnetic and microwave absorption properties of Ti doped Li–Zn ferrites. J. Alloys Compd. 805, 934–941 (2019)

    Article  CAS  Google Scholar 

  6. P. Kaur, S. Bahel, S.B. Narang, Broad-band microwave absorption of Sr0.85La0.15(MnZr)xFe122xO19 hexagonal ferrite in 18–40 GHz frequency range. J. Magn. Magn. Mater. 460, 489–494 (2018)

    Article  CAS  Google Scholar 

  7. A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci.: Mater. Electron. 29, 20573–20579 (2018)

    CAS  Google Scholar 

  8. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)

    Article  CAS  Google Scholar 

  9. H. Harzali, F. Saida, A. Marzouki, A. Megriche, F. Baillon, F. Espitalier, A. Mgaidi, Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 419, 50–56 (2016)

    Article  CAS  Google Scholar 

  10. Hirthna, S. Sendhilnathan, Enhancement in dielectric and magnetic properties of Mg2+ substituted highly porous super paramagnetic nickel ferrite nanoparticles with Williamson–Hall plots mechanistic view. Ceram. Int. 43, 15447–15453 (2017)

    Article  CAS  Google Scholar 

  11. Z.Ž Lazarević, Č Jovalekić, D.L. Sekulić, A. Milutinović, S. Baloš, M. Slankamenac, N.Ž Romčević, Structural, electrical and dielectric properties of spinel nickel ferrite prepared by soft mechanochemical synthesis. Mater. Res. Bull. 48, 4368–4378 (2013)

    Article  CAS  Google Scholar 

  12. S.C. Tolani, A.R. Golhar, K.G. Rewatkar, A review of morphological, structural behaviour and technological applications of ferrites. AIP Conf. Proc. 2104, 030032 (2019)

    Article  CAS  Google Scholar 

  13. V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys Compd. 488, 199–203 (2009)

    Article  CAS  Google Scholar 

  14. Y. Sun, Y. Diao, H. Wang, G. Chen, M. Zhang, M. Guo, Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co) Fe2O4 from low nickel matte. Ceram. Int. 43, 16474–16481 (2017)

    Article  CAS  Google Scholar 

  15. M.N. Ashiq, S. Saleem, M.A. Malana, A.U. Rehman, Physical, electrical and magnetic properties of nanocrystalline Zr–Ni doped Mn-ferrite synthesized by the co-precipitation method. J. Alloys Compd. 486, 640–644 (2009)

    Article  CAS  Google Scholar 

  16. S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad, K. Srinivasarao, Ch. Srinivas, K.V. Babu, E.R. Kumar, N.K. Mohan, D.L. Sastry, Synthesis of MFe2O4 (M=Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties. Ceram. Int. 44, 10517–10524 (2018)

    Article  CAS  Google Scholar 

  17. H.S. Aziz, R.A. Khan, F. Shah, B. Ismail, J. Nisar, S.M. Shah, A. Rahim, A.R. Khan, Improved electrical, dielectric and magnetic properties of Al–Sm co-doped NiFe2O4 spinel ferrites nanoparticles. Mater. Sci. Eng. B 243, 47–53 (2019)

    Article  CAS  Google Scholar 

  18. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  CAS  Google Scholar 

  19. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020)

    Article  CAS  Google Scholar 

  20. N. Boda, K.C.B. Naidu, D.B. Basha, D. Ravinder, Structural and magnetic properties of CdCoFe2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1039–1044 (2020)

    Article  CAS  Google Scholar 

  21. B. Nandan, M.C. Bhatnagar, S.C. Kashyap, Cation distribution in nanocrystalline cobalt substituted nickel ferrites: x-ray diffraction and Raman spectroscopic investigations. J. Phys. Chem. Solids 129, 298–306 (2019)

    Article  CAS  Google Scholar 

  22. S.R. Bhongale, H.R. Ingawale, T.J. Shinde, K. Pubby, S.B. Narang, P.N. Vasambekar, Nano-crystalline magnesium substituted cadmium ferrites as X-band microwave absorbers. J. Magn. Magn. Mater. 441, 475–481 (2017)

    Article  CAS  Google Scholar 

  23. K.C.B. Naidu, W. Madhuri, Microwave processed bulk and nano NiMg ferrites: a comparative study on X-band electromagnetic interference shielding properties. Mater. Chem. Phys. 187, 164–176 (2017)

    Article  CAS  Google Scholar 

  24. X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong, Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J. Magn. Magn. Mater. 405, 36–41 (2016)

    Article  CAS  Google Scholar 

  25. M. Deepty, C. Srinivas, K.V. Babu, E.R. Kumar, S.S. Meena, C.L. Prajapat, N.K. Mohan, D.L. Sastry, Structural and electron spin resonance spectroscopic studies of MnxZn1xFe2O4 (x = 0.5, 0.6, 0.7) nanoferrites synthesized by sol–gel auto combustion method. J. Magn. Magn. Mater. 466, 60–68 (2018)

    Article  CAS  Google Scholar 

  26. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloys Compd. 509, 3917–3923 (2011)

    Article  CAS  Google Scholar 

  27. J. Venturini, R. Young, S. Zampiva, S. Arcaro, C.P. Bergmann, Sol–gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: influence of additives on their stoichiometry and magnetic properties. Ceram. Int. 44, 12381–12388 (2018)

    Article  CAS  Google Scholar 

  28. M. Atif, W. Asghar, M. Nadeem, W. Khalid, Z. Ali, S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J. Phys. Chem. Solids 123, 36–42 (2018)

    Article  CAS  Google Scholar 

  29. S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2xZnxO4δ nanoparticles. J. Magn. Magn. Mater. 414, 144–152 (2016)

    Article  CAS  Google Scholar 

  30. J. Feng, R. Xiong, Y. Liu, F. Su, X. Zhang, Preparation of cobalt substituted zinc ferrite nanopowders via autocombustion route: an investigation to their structural and magnetic properties. J. Mater. Sci.: Mater. Electron. 29, 18358–18371 (2018)

    CAS  Google Scholar 

  31. K. Pubby, S.S. Meena, S.M. Yusuf, S.B. Narang, Cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route: X-band electromagnetic characterization. J. Magn. Magn. Mater. 466, 430–445 (2018)

    Article  CAS  Google Scholar 

  32. B. Nandan, M.C. Bhatnagar, S.C. Kashyap, Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations. J. Phys. Chem. 129, 298–306 (2019)

    CAS  Google Scholar 

  33. L.C. Sonia, M. Victory, S. Phanjoubam, A comparative study of the properties of zinc ferrite nanoparticles synthesized by different techniques for nanofluid preparation. Integr. Ferroelectr. 204, 100–111 (2020)

    Article  CAS  Google Scholar 

  34. M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

    Article  CAS  Google Scholar 

  35. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via Co-precipitation method. Physica B 583, 412051 (2020)

    Article  CAS  Google Scholar 

  36. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company Inc., Boston, 1978)

    Google Scholar 

  37. F. Gözüak, Y. Köseoğlu, A. Baykal, H. Kavas, Synthesis and characterization of CoxZn1xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 321, 2170–2177 (2009)

    Article  CAS  Google Scholar 

  38. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt substituted zinc ferrites. J. Alloys Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  39. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  40. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinelzinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46, 8640–8650 (2020)

    Article  CAS  Google Scholar 

  41. A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)

    Article  CAS  Google Scholar 

  42. N.M. Deraz, A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrolysis 94, 41–47 (2012)

    Article  CAS  Google Scholar 

  43. M. Sharif, J. Jacob, M. Javed, A. Manzoor, K. Mahmood, M.A. Khan, Impact of Co and Mn substitution on structural and dielectric properties of lithium soft ferrites. Phys. Rev. B 567, 45–50 (2019)

    CAS  Google Scholar 

  44. N. Aggarwal, S.B. Narang, Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies. J. Alloys Compd. 866, 157461 (2021). https://doi.org/10.1016/j.jallcom.2020.157461

    Article  CAS  Google Scholar 

  45. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1xZnxFe2O4 (x=0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2017)

    Article  CAS  Google Scholar 

  46. A. Hossain, I.N. Esha, I.B. Elius, M.N.I. Khan, K.H. Maria, Interrelation between cationic distribution and electromagnetic properties of vanadium substituted Mn–Zn ferrites. J. Mater. Sci.: Mater. Electron. 32, 977–992 (2021)

    CAS  Google Scholar 

  47. Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H.S. EL Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li–Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)

    Article  CAS  Google Scholar 

  48. P. Coppola, F.G. da Silva, G. Gomide, F.L.O. Paula, A.F.C. Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino, Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J. Nanopart. Res. (2016). https://doi.org/10.1007/s11051-016-3430-1

    Article  Google Scholar 

  49. F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and magnetic properties of spinel ferrite nanoparticles. J. Nanosci. Nanotechnol. 19, 4888–4902 (2019)

    Article  CAS  Google Scholar 

  50. M.A. Amer, M.E. Hiti, Mössbauer and X-ray studies for Ni0.2ZnxMg0.8xFe2O4 ferrites. J. Magn. Magn. Mater. 234, 118–125 (2001)

    Article  CAS  Google Scholar 

  51. A.M. Wahba, M.B. Mohamed, Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram. Int. 40, 6127–6135 (2014)

    Article  CAS  Google Scholar 

  52. Aakash, R. Choubey, D. Das, S. Mukherjee, Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. J. Alloys Compd. 668, 33–39 (2016)

    Article  CAS  Google Scholar 

  53. Z. Wang, D. Schiferl, Y. Zhao, HSt.C. O’Neill, High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J. Phys. Chem. Solids 64, 2517–2523 (2003)

    Article  CAS  Google Scholar 

  54. F.A. Wahaab, L.L. Adebayo, A.A. Adekoya, I.G. Hakeem, B. Alqasem, A.M. Obalalu, Physiochemical properties and electromagnetic wave absorption performance of Ni0.5Cu0.5Fe2O4 nanoparticles at X-band frequency. J. Alloys Compd. 836, 155272 (2020)

    Article  CAS  Google Scholar 

  55. K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn–Zr substituted Ni–Co ferrites. Mater. Lett. 244, 186–191 (2019)

    Article  CAS  Google Scholar 

  56. P. Kaur, S.B. Narang, S. Bahel, Complex permittivity, complex permeability and reflection loss of Co–Zr substituted La–Sr hexaferrites in 18–40 GHz frequency range. J. Magn. Magn. Mater. 502, 166456 (2020)

    Article  CAS  Google Scholar 

  57. K.C.B. Naidu, S.R. Kiran, W. Madhuri, Microwave processed NiMgZn ferrites for electromagnetic intereference shielding applications. IEEE Trans. Magn. 53, 1–7 (2017)

    Article  Google Scholar 

  58. W. Wang, C. Zang, Q. Jiao, Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique. J. Magn. Magn. Mater. 349, 116–120 (2014)

    Article  CAS  Google Scholar 

  59. X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, C. Wong, Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloys Compd. 662, 409–414 (2016)

    Article  CAS  Google Scholar 

  60. K. Pubby, K.V. Babu, S.B. Narang, Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Mater. Sci. Eng. B 255, 114513 (2020)

    Article  CAS  Google Scholar 

  61. Z. Hou, J. Xiang, X. Zhang, L. Gong, J. Mi, X. Shen, K. Zhang, Microwave absorption properties of single- and double-layer absorbers based on electrospun nickel–zinc spinel ferrite and carbon nanofibers. J. Mater. Sci.: Mater. Electron. 29, 12258–12268 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge UGC (University Grants Commission) India for providing fellowship through the MANF (Maulana Azad National Fellowship) scheme.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Synthesis, characterization, data collection, analysis, and writing of manuscript by MK. Review, edit, and supervision by SB and PK.

Corresponding author

Correspondence to Shalini Bahel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Kaur, P. & Bahel, S. K-band microwave absorption analysis of sol–gel synthesized cobalt-substituted zinc spinel ferrites. J Mater Sci: Mater Electron 33, 12182–12200 (2022). https://doi.org/10.1007/s10854-022-08178-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08178-w

Navigation