Skip to main content
Log in

Physicochemical investigations of Pd2+ substituted ZnO nanoflowers for liquefied petroleum gas sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present study portrays, physicochemical investigations of pristine and Pd2+ modified ZnO nanoflowers (NFs) compositional series [Zn(1−x)PdxO NFs; where x = 0, 0.01, 0.03, 0.05, and 0.07] synthesized via sol–gel reaction route. X-ray diffractogram of all the compositions displayed hexagonal wurtzite type crystallinity with P63mc space group without any traces of impurities as confirmed from Rietveld refinement technique. It was found that the average crystallite size increased from 32 to 74 nm with Pd2+ intrusion in the crystal lattice framework of ZnO. FESEM micrographs depicted that the surface morphology of pure and Pd modified compositions exhibit flower-shaped surface morphology. The optical properties of as-synthesized NFs were carried out using UV–vis spectroscopy and it was observed that optical energy bandgap (Eg) decreased minutely by Pd2+ doping. To determine the gas sensing behavior of synthesized NFs, the prepared gel during material fabrication was used to cast thin films. The thin films were calcined at 600 °C for LPG gas sensing activity and it was observed that the transient curve shows a high response for the composition x = 0.03 for the concentration of 2000 ppm. The present result illustrates that synthesized NFs showed potential candidature for LPG gas sensing. The present study reveals synthesized NFs showed potential candidature for LPG gas sensing 80 °C with a gas sensitivity of 315%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data was acquired through experimentation, and the institution provided other material.

References

  1. A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, G. Sberveglieri, Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low-temperature detection of pollutant gases. Sens. Actuators B 130(1), 567–573 (2008). https://doi.org/10.1016/j.snb.2007.11.048

    Article  CAS  Google Scholar 

  2. D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor. Sens. Actuators B 147(2), 488–494 (2010). https://doi.org/10.1016/j.snb.2010.02.063

    Article  CAS  Google Scholar 

  3. G. Singh, R.C. Singh, Highly sensitive and selective liquefied petroleum gas sensor based on novel ZnO–NiO heterostructures. J. Mater. Sci.: Mater. Electron. 30(22), 20010–20018 (2019). https://doi.org/10.1007/s10854-019-02368-9

    Article  CAS  Google Scholar 

  4. K. Hanabusa, S. Takata, M. Fujisaki, Y. Nomura, M. Suzuki, Fluorescent gelators for detection of explosives. Bull. Chem. Soc. Jpn. 89(11), 1391–1401 (2016). https://doi.org/10.1246/bcsj.20160232

    Article  CAS  Google Scholar 

  5. G. Lawrence et al., A nanoporous cytochrome c film with highly ordered porous structure for sensing of toxic vapors. Adv. Mater. 29(42), 1–7 (2017). https://doi.org/10.1002/adma.201702295

    Article  CAS  Google Scholar 

  6. S. Yang, C. Jiang, S. Huai Wei, Gas sensing in 2D materials. Appl. Phys. Rev. (2017). https://doi.org/10.1063/1.4983310

    Article  Google Scholar 

  7. I. Osica et al., Highly networked capsular silica-porphyrin hybrid nanostructures as efficient materials for acetone vapor sensing. ACS Appl. Mater. Interfaces 9(11), 9945–9954 (2017). https://doi.org/10.1021/acsami.6b15680

    Article  CAS  Google Scholar 

  8. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). https://doi.org/10.3390/s100302088

    Article  CAS  Google Scholar 

  9. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  10. S.A. Vanalakar et al., Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B 221(2), 1195–1201 (2015). https://doi.org/10.1016/j.snb.2015.07.084

    Article  CAS  Google Scholar 

  11. S.P. Patil et al., Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.07.135

    Article  Google Scholar 

  12. S.B. Jagadale, V.L. Patil, S.A. Vanalakar, P.S. Patil, Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.11.116

    Article  Google Scholar 

  13. S.S. Shendage et al., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B 240(2), 426–433 (2017). https://doi.org/10.1016/j.snb.2016.08.177

    Article  CAS  Google Scholar 

  14. H. Nanto, T. Minami, S. Takata, Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J. Appl. Phys. 60(2), 482–484 (1986). https://doi.org/10.1063/1.337435

    Article  CAS  Google Scholar 

  15. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. (2007). https://doi.org/10.1016/j.matchar.2006.11.007

    Article  Google Scholar 

  16. B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 112(17), 6643–6647 (2008). https://doi.org/10.1021/jp8003147

    Article  CAS  Google Scholar 

  17. T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B 190, 120–126 (2014). https://doi.org/10.1016/j.snb.2013.07.091

    Article  CAS  Google Scholar 

  18. S. Maiti, S. Pal, K.K. Chattopadhyay, Recent advances in low temperature, solution nanoarchitectures for electron emission and. CrystEngComm 17, 9264–9295 (2017). https://doi.org/10.1039/C5CE01130B.This

    Article  Google Scholar 

  19. Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 1–103 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  20. C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 138(3), 136–138 (2006). https://doi.org/10.1016/j.ssc.2006.02.016

    Article  CAS  Google Scholar 

  21. S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi, S.R. Kim, Micromachined piezoelectric membrane acoustic device. Sens. Actuators A 103(1–2), 130–134 (2003). https://doi.org/10.1016/S0924-4247(02)00310-2

    Article  CAS  Google Scholar 

  22. D.P. Hansora, N.G. Shimpi, S. Mishra, Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications. RSC Adv. 5(130), 107716–107770 (2015). https://doi.org/10.1039/c5ra16478h

    Article  CAS  Google Scholar 

  23. Q. Wan et al., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004). https://doi.org/10.1063/1.1738932

    Article  CAS  Google Scholar 

  24. W.T. Moon, Y.K. Jun, H.S. Kim, W.S. Kim, S.H. Hong, CO gas sensing properties in Pd-added ZnO sensors. J. Electroceram. 23(2–4), 196–199 (2009). https://doi.org/10.1007/s10832-007-9377-y

    Article  CAS  Google Scholar 

  25. M.J.S. Spencer, I. Yarovsky, ZnO nanostructures for gas sensing: interaction of NO2, NO, O, and N with the ZnO(\(10\overline{10}\)) surface. J. Phys. Chem. C 114(24), 10881–10893 (2010). https://doi.org/10.1021/jp1016938

    Article  CAS  Google Scholar 

  26. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  27. T. Trindade, J.D. Pedrosa De Jesus, P. O’Brien, Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution. J. Mater. Chem. 4(10), 1611–1617 (1994). https://doi.org/10.1039/jm9940401611

    Article  CAS  Google Scholar 

  28. L. Guo, Y.L. Ji, H. Xu, P. Simon, Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g

    Article  CAS  Google Scholar 

  29. B. Weintraub, Z. Zhou, Y. Li, Y. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2(9), 1573–1587 (2010). https://doi.org/10.1039/c0nr00047g

    Article  CAS  Google Scholar 

  30. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater. 14(10), 4172–4177 (2002). https://doi.org/10.1021/cm020077h

    Article  CAS  Google Scholar 

  31. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R 61(1–6), 1–39 (2008). https://doi.org/10.1016/j.mser.2008.02.001

    Article  CAS  Google Scholar 

  32. N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor. Appl. Surf. Sci. 390, 17–24 (2016). https://doi.org/10.1016/j.apsusc.2016.08.050

    Article  CAS  Google Scholar 

  33. H. Li, S. Jiao, S. Gao, H. Li, L. Li, Dynamically controlled synthesis of different ZnO nanostructures by a surfactant-free hydrothermal method. CrystEngComm 16(38), 9069–9074 (2014). https://doi.org/10.1039/c4ce01282h

    Article  CAS  Google Scholar 

  34. E. Oh et al., High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B 141(1), 239–243 (2009). https://doi.org/10.1016/j.snb.2009.06.031

    Article  CAS  Google Scholar 

  35. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B 138(1), 168–173 (2009). https://doi.org/10.1016/j.snb.2009.02.008

    Article  CAS  Google Scholar 

  36. S.D. Lee, S.H. Nam, M.H. Kim, J.H. Boo, Synthesis and photocatalytic property of ZnO nanoparticles prepared by spray-pyrolysis method. Phys. Procedia 32, 320–326 (2012). https://doi.org/10.1016/j.phpro.2012.03.563

    Article  CAS  Google Scholar 

  37. M. Dhingra, N.K. Singh, S. Shrivastava, P.S. Kumar, S. Annapoorni, Worm like zinc oxide nanostructures as efficient LPG sensors. Sens. Actuators A 190, 168–175 (2013). https://doi.org/10.1016/j.sna.2012.11.015

    Article  CAS  Google Scholar 

  38. D.B. Bharti, A.V. Bharati, Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence 32(3), 317–320 (2017). https://doi.org/10.1002/bio.3180

    Article  CAS  Google Scholar 

  39. J.A. Alvarado, A. Maldonado, H. Juarez, M. Pacio, Synthesis of colloidal ZnO nanoparticles and deposit of thin films by spin coating technique. J. Nanomater. (2013). https://doi.org/10.1155/2013/903191

    Article  Google Scholar 

  40. N. Salah et al., High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 6, 863–869 (2011). https://doi.org/10.2147/ijn.s18267

    Article  CAS  Google Scholar 

  41. P.C. Chang et al., ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 16(24), 5133–5137 (2004). https://doi.org/10.1021/cm049182c

    Article  CAS  Google Scholar 

  42. P.P. Sahay, R.K. Nath, Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sens. Actuators B 133(1), 222–227 (2008). https://doi.org/10.1016/j.snb.2008.02.014

    Article  CAS  Google Scholar 

  43. N. Kakati, S.H. Jee, S.H. Kim, J.Y. Oh, Y.S. Yoon, Thickness dependency of sol–gel derived ZnO thin films on gas sensing behaviors. Thin Solid Films 519(1), 494–498 (2010). https://doi.org/10.1016/j.tsf.2010.08.005

    Article  CAS  Google Scholar 

  44. A. Dey, S. Roy, S.K. Sarkar, Synthesis, fabrication and characterization of ZnO-based thin films prepared by sol-gel process and H2 gas sensing performance. J. Mater. Eng. Perform. 27(6), 2701–2707 (2018). https://doi.org/10.1007/s11665-018-3284-z

    Article  CAS  Google Scholar 

  45. A. Gupta, S. Rohilla, Synthesis, characterization and Rietveld refinement of AgBr@KNi [FeC6N6]0.7[CoC6N6]0.3/SiO2 nanocomposite. Mater. Today 44, 4282–4286 (2020). https://doi.org/10.1016/j.matpr.2020.10.545

    Article  CAS  Google Scholar 

  46. R. Wahab et al., Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42(9), 1640–1648 (2007). https://doi.org/10.1016/j.materresbull.2006.11.035

    Article  CAS  Google Scholar 

  47. E.P. Etape, J. Foba-Tendo, L.J. Ngolui, B.V. Namondo, F.C. Yollande, M.B.N. Nguimezong, Structural characterization and magnetic properties of undoped and Ti-doped ZnO nanoparticles prepared by modified oxalate route. J. Nanomater. (2018). https://doi.org/10.1155/2018/9072325

    Article  Google Scholar 

  48. A.A. Joraid, A.S. Solieman, M.A. Al-Maghrabi, M.H. Almutairy, Studies of crystallization kinetics and optical properties of ZnO films prepared by sol–gel technique. J. Sol–Gel Sci. Technol. 97(3), 523–539 (2021). https://doi.org/10.1007/s10971-020-05467-w

    Article  CAS  Google Scholar 

  49. R. Selvanayaki et al., Structural, optical and electrical conductivity studies of pure and Fe doped zinc oxide (ZnO) nanoparticles. Mater. Today 49, 2628–2631 (2022). https://doi.org/10.1016/j.matpr.2021.08.045

    Article  CAS  Google Scholar 

  50. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 1–10 (2020)

    Article  Google Scholar 

  51. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, structure investigation by neutron diffraction and x-ray diffraction of graphene nanocomposite CuO–rGO prepared by low-cost method. Physica Status Solidi (a) 218(12), 2100138 (2021)

    Article  CAS  Google Scholar 

  52. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic–inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4]CuCl2Br 2. Physica Status Solidi (a) 218(12), 2100036 (2021)

    Article  CAS  Google Scholar 

  53. X.J. Wang, W. Wang, Y.L. Liu, Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sens. Actuators B 168, 39–45 (2012). https://doi.org/10.1016/j.snb.2012.01.006

    Article  CAS  Google Scholar 

  54. R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Antibacterial studies and statistical design set data of quasi zinc oxide nanostructures. RSC Adv. 6(38), 32328–32339 (2016). https://doi.org/10.1039/c6ra05297e

    Article  CAS  Google Scholar 

  55. Y.H. Elbashar, A.E. Omran, J.A. Khaliel, A.S. Abdel-Rahaman, H.H. Hassan, Ultraviolet transmitting glass matrix for low power laser lens. Nonlinear Opt. Quantum. Opt.: Mod. Opt. 49, 247–265 (2018)

    CAS  Google Scholar 

  56. Y.H. Elbashar, A.E. Omran, J.A. Khaliel, A.S. Abdel-Rahaman, H.H. Hassan, Ultraviolet transmitting glass matrix for low power laser lens. Nonlinear Opt. Quantum. Opt.: Mod. Opt. 51, 171–193 (2018)

    Google Scholar 

  57. Y.H. Elbashar, A.E. Omran, J.A. Khaliel, A.S. Abdel-Rahaman, H.H. Hassan, Ultraviolet transmitting glass matrix for low power laser lens. Nonlinear Opt. Quantum. Opt.: Mod. Opt. 51, 195–212 (2018)

    Google Scholar 

  58. S.K. Abdel-Aal, A.S. Abdel-Rahman, Fascinating physical properties of 2d hybrid perovskite [(NH3)(CH2)7(NH3)] CuClxBr4x, x= 0, 2 and 4. J. Electron. Mater. 48(3), 1686–1693 (2019)

    Article  CAS  Google Scholar 

  59. U.T. Nakate, R.N. Bulakhe, C.D. Lokhande, S.N. Kale, Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl. Surf. Sci. 371, 224–230 (2016). https://doi.org/10.1016/j.apsusc.2016.02.196

    Article  CAS  Google Scholar 

  60. M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Structural and gas sensing properties of annealed ZnO thin film. Silicon 8(3), 361–367 (2016). https://doi.org/10.1007/s12633-015-9390-8

    Article  CAS  Google Scholar 

  61. S. Choudhary, S. Annapoorni, R. Malik, Evolution and growth mechanism of hexagonal ZnO nanorods and their LPG sensing response at low operating temperature. Sens. Actuators A 293, 207–214 (2019). https://doi.org/10.1016/j.sna.2019.04.048

    Article  CAS  Google Scholar 

  62. M. Tonezzer, T.T. Le Dang, N. Bazzanella, V.H. Nguyen, S. Iannotta, Comparative gas-sensing performance of 1D and 2D ZnO nanostructures. Sens. Actuators B 220, 1152–1160 (2015). https://doi.org/10.1016/j.snb.2015.06.103

    Article  CAS  Google Scholar 

  63. A.K. Singh, Microwave assisted growth of ZnO nanorods and nanopolypods nanostructure thin films for gas and explosives sensing. J. Nanopart. 2013, 1–12 (2013). https://doi.org/10.1155/2013/783691

    Article  CAS  Google Scholar 

  64. M.N. Cardoza-Contreras, J.M. Romo-Herrera, L.A. Ríos, R. García-Gutiérrez, T.A. Zepeda, O.E. Contreras, Single ZnO nanowire-based gas sensors to detect low concentrations of hydrogen. Sensors (Switzerland) 15(12), 30539–30544 (2015). https://doi.org/10.3390/s151229816

    Article  CAS  Google Scholar 

  65. V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Mater. Sci. Eng. B 137(1–3), 119–125 (2007). https://doi.org/10.1016/j.mseb.2006.11.008

    Article  CAS  Google Scholar 

  66. S. Bhatia, N. Verma, R.K. Bedi, Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys. 7, 801–806 (2017). https://doi.org/10.1016/j.rinp.2017.02.008

    Article  Google Scholar 

  67. S. Mondal, S. Bhattacharya, P. Mitra, Structural, morphological, and LPG sensing properties of Al-doped ZnO thin film prepared by SILAR. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/382380

    Article  Google Scholar 

  68. A. Yadav, B.C. Yadav, A mechanochemical synthesis of nanostructured zinc oxide via acetate route for LPG sensing. J. Exp. Nanosci. 9(5), 501–511 (2014). https://doi.org/10.1080/17458080.2012.671541

    Article  CAS  Google Scholar 

  69. K.V. Gurav, P.R. Deshmukh, C.D. Lokhande, LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods. Sens. Actuators B 151(2), 365–369 (2011). https://doi.org/10.1016/j.snb.2010.08.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the EMDL Department of Physics and Astrophysics, University of Delhi, permission for work in the laboratory, and Chandigarh University for the XRD and FESEM facility.

Author information

Authors and Affiliations

Authors

Contributions

PP: conceptualization, investigation. MD: supervision. NK: review & editing.

Corresponding author

Correspondence to Manish Deshwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Informed consent was obtained from all authors included in the study.

Consent to publish

Consent was obtained from all authors to publish in the journal.

Research involving human and/or animal participants

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patial, P., Deshwal, M. & Kumar, N. Physicochemical investigations of Pd2+ substituted ZnO nanoflowers for liquefied petroleum gas sensing. J Mater Sci: Mater Electron 33, 11768–11782 (2022). https://doi.org/10.1007/s10854-022-08141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08141-9

Navigation